DYNAMICAL MEAN FIELD THEORY

 $+$
DENSITY FUNCTIONAL THEORY FROM FUNCTIONAL PERSPECTIVE

Kristjan Haule
RUTGERS

Support:

ACS
Chemistry for Life
Blavatnik Awards Young Scientists

WHY ISTHIS SO HARDTO SOLVE?

Basic laws of Quantum Mechanics were developed in early 1900 (Schroedinger Eq. 1925, Dirac Eq. 1928).

Dirac (1929)
"The underlying physical laws necessary for a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

We know the Hamiltonian:
[Proc. Roy. Soc. (London) A123, 714]

$$
H=-\sum_{i} \frac{\nabla_{i}^{2}}{2 m_{e}}+\sum_{i} V_{e x t}\left(\mathbf{r}_{i}\right)+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad \text { Emergence! }
$$

We know the equation:
$H \Psi(\mathbf{r}, t)=-\partial_{t} \Psi(\mathbf{r}, t)$

DIRECT APPROACHTO SCH. EQ.

Perturbation theory does not work:

$$
\begin{aligned}
& \text { Kinetic energy: } E_{k i n} \approx \frac{1}{2 m_{e} a^{2}} \approx 0.2 \mathrm{eV} \\
& \text { Potential energy: } E_{p o t} \approx \frac{e^{2}}{\varepsilon a} \approx 0.5 \mathrm{eV}
\end{aligned}
$$

Interaction is non-perturbative.

Direct Numerical approach hopeless:
1023 interacting fermions
and wave function is fully antisymmetric with
respect to electron coordinates and spins
$\Psi\left(\mathbf{r}_{1} \sigma_{1}, \mathbf{r}_{2} \sigma_{2}, \cdots, \mathbf{r}_{N} \sigma_{N}\right)$
Sign problem NP hard => cost scales: Exp(-size/T)

INDIRECT APPROACH / STANDARD THEORY

Density Functional Theory:
Hohengerb \& Kohn proved: \exists functional of electron density ρ, which is minimized at the physical density, and gives ground state energy.

$$
E[\{\rho(\mathbf{r})\}]=\underbrace{E_{\text {kin }}[\{\rho\}]+E_{\text {int }}[\{\rho\}]}_{\begin{array}{c}
\text { universal functional } \\
\text { independent of material } \\
\text { depends on EM interaction }
\end{array}}+\int_{\text {material dependent term }} d \mathbf{r} V_{\text {ext }}(\mathbf{r}) \rho(\mathbf{r})
$$

Kohn \& Sham (1965):To minimize the functional: solve auxiliary single-particle problem+self-consistency condition
$\left(\frac{-\hbar^{2}}{2 m_{e}} \nabla^{2}+V_{e x t}(\mathbf{r})+V_{\text {Hartree }}(\mathbf{r})\right) \psi_{n}(\mathbf{r})+V_{X C}[\{\rho(\mathbf{r})\}] \psi_{n}(\mathbf{r})=\varepsilon_{n} \psi_{n}(\mathbf{r})$
self-consistency auxiliary potential:
$V_{X C}[\{\rho(\mathbf{r})\}]$
unknown but condition: $\quad \rho(\mathbf{r})=\sum_{\varepsilon_{n}<\mu} \psi_{n}^{*}(\mathbf{r}) \psi_{n}(\mathbf{r})$

LOCAL DENSITY APPROXIMATION

Universal but unknown functional

$$
E_{\text {int }}[\{\rho(\mathbf{r})\}]=E_{\text {Hartree }}[\{\rho(\mathbf{r})\}]+E_{X C}[\{\rho(\mathbf{r})\}]
$$

approximated by local ansatz:

$$
E_{X C}[\{\rho(\mathbf{r})\}] \approx \int d \mathbf{r} \rho(\mathbf{r}) \varepsilon_{x c}(\rho(\mathbf{r}))
$$

energy density at point r depends only on the charge density at the same point.

$$
\varepsilon_{x c}(n) \quad \begin{aligned}
& \text { (jellium) model by } \mathrm{QMC}
\end{aligned}
$$

DIFFERENT INDIRECT APPROACH LUTTINGER-WARD FUNCTIONAL

Luttinger-Ward Functional:

$$
\Gamma[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\underbrace{\operatorname{Tr} \log (-G)+\Phi[\{G\}]}
$$

material dependent term:

universal functional
 $G_{0}^{-1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left[\omega+\mu+\nabla^{2}-V_{e x t}(\mathbf{r})\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \quad$ independent of material
$\Gamma[G] \begin{aligned} & \text { Extremum in the exact Green's function } \\ & \Gamma \text { is free energy in extremum }\end{aligned} \quad \begin{aligned} & \frac{\delta \Gamma[G]}{\delta G}=0\end{aligned}$
$\Phi[G] \quad$ Is a sum of all connected two particle irreducible Feynman diagrams (skeleton diagrams).

For a proof see: Abrikosov, Gorkov, Dzialoszynski book

LW- FUNCTIONAL

$$
\Gamma[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\operatorname{Tr} \log (-G)+\Phi[\{G\}]
$$

Solution obtained
by stationarity

$$
\frac{\delta \Gamma[G]}{\delta G}=G^{-1}-G_{0}^{-1}+\frac{\delta \Phi[G]}{\delta G}=0
$$

$\delta \Phi[G] \quad$ Functional derivative obtained by
$\frac{\delta G}{\delta G} \quad$ cutting G propagator in every diagram in all possible ways

$\rightarrow-G$
$\frac{\delta \Phi[G]}{\delta G}=\frac{\square}{\square}+\frac{\square}{\square}+\ldots+\cdots$ In practice:

USEFUL APPROXIMATIONS

1) Hartree-Fock:

$$
\Phi^{H F}[G]=1 / 2
$$

Stationarity of $\Gamma[G]$ gives: $\Sigma_{H F}=$

$$
\left(\Sigma_{H F}=\frac{\delta \Phi^{H F}[G]}{\delta G}\right)
$$

$$
\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \int d \mathbf{r}^{\prime \prime} \rho\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime \prime}\right) v_{c}\left(\mathbf{r}^{\prime \prime}-\mathbf{r}\right)-\rho\left(\mathbf{r}^{\prime}, \mathbf{r}\right) v_{c}\left(\mathbf{r}^{\prime}-\mathbf{r}\right)
$$

USEFUL APPROXIMATIONS

2) RPA (also called GW in abinitio world):

Stationarity of $\Gamma[G]$ gives:
$\Sigma_{G W}=\Sigma_{H F}+$

DFT IN LW-LIKE LANGUAGE

electron density $\quad \rho(\mathbf{r})=G\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ is the diagonal part of the GF, i.e.,

$$
G\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right)=-\left\langle T_{\tau} \psi(\mathbf{r} \tau) \psi^{\dagger}\left(\mathbf{r}^{\prime} \tau^{\prime}\right)\right\rangle
$$

DFT approximation: $\Phi[\{G\}] \rightarrow E_{H}[\rho]+\Phi_{x c}[\rho]$
While DFT gives exact energy at $\mathrm{T}=0$, in LW language it appears as an approximation
Consequence for the L.W. like functional:
to the exact G and F

Stationarity: $G^{-1}-G_{0}^{-1}=\left(V_{H}[\rho]+V_{x c}[\rho]\right) \delta\left(\tau-\tau^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$
where $\quad G_{0}^{-1}=-\frac{\partial}{\partial \tau}+\mu+\nabla^{2}-V_{e x t} \longleftarrow$ Born-Oppenheimer
and $\quad \rho(\mathbf{r})=G\left(\tau \mathbf{r}, \tau^{\prime} \mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$-- Self-consistency condition

LOCAL/SEMI-LOCAL DENSITY APPR.

Extraordinary success: Standard theory of the solid state systems Real space: Momentum space:

Band Theory: electrons as waves: Rigid band picture: En(k) versus k

PROBLEMS IN COMPLEX MAT.

Rigid bands picture: at each momentum point electron weight concentrated in a single delta function

Electrons have dual nature, partly itinerant and partly localized

- Need to incorporate a real space perspective into wave picture (Mot localization -> electrons partly localized, Hunds coupling->leads to orbital blocking).

SUCCESSFUL THEORY: DMFT+DFT

database: http://hauleweb.rutgers.edu

Compound	Loa Results			onet Resules						Input Files				Output Files Downioad
	DOS	OPT	banos	cDos	SK..NP	OPT	DLT	PROB	A(k, m)	struct	ndfml	indtmi	param	
Anc	Dos	ort	unos	coss	cicisp	वот	DuI	mon	A0.m)	tuxt	ndmf	ndmat	aram	Pantlad fors
AnN	Dos	Opr	mos	coss	SCAP	orr	OUI	*ow	Nam	unxs	mdet	ndmt	aramis	Damiodtase
An02	Dos	OPT	wos	coos	SC.mp	व\%	DII	Hen	N0.m	3ust	ndmf	ndm	aaram	Damend fase
mal22-NN	dos	OrT	wnos	coos	ciche	व\%	DII	880	n(k)	tuxt	ndmf	ndm	aram	Damiod pase
Sufe2 Ac 2	dos	or	unos	cocs	c.n	or	OII	Hom	Alam	Hexa	ndmf	mant	мamm	Dambadtese
cesalota	Dos	Of	wos	coos	Sc.ap	Or	QuI	Hen	nom)	must	ndat	mdm	аматя	Damiod fase
c.e.gamsa	dos	Ort	wnos	05	SCAP	\%	DII	man	N(0)	tuxat	ndmf	ndmf	aram	Damilod pase
x	Dos	Or	wes	cocs	cin	Or	DII	Hob	Nax)	ateo	nd	mant	antim	Dambad fiese
CmN	-0s	or	anos	coos	SC.ap	Or	DII	Hens	Namb	yox	ndmf	mam	амат	Damiodtase
Crop	Dos	OPT	wos	coos	SC.ap	Or	DII	Pm	N(0)m	atust	ndat	ndm	aaram	Damenod Pase
data	Dos	Of	unos	coos	Sc.mp	оr	dut	mo	nem)	trust	ndmet	ndms	aram	Dambad tise
feas2	Dos	Or	mos	cos	SC.NP	Or	OUT	Hens	Nam	max	nden	mam	aram	Damindtase
feo	Dos	OPT	wos	coos	SC.is	CPT	[uI	Prom	N0.m	must	ndat	ndm	aaram	Damenod fase
reo.anc	Dos	Of	wnos	coos	cicmp	or	DII	bson	N0.m	atust	ndmet	ndmt	aram	Dambiad Past
fesel	pes	ort	anos	coos	Sc.ap	art	OUT	mos	nem	emast	nden	ndet	aram	Damiad tiax
ese	dos	OPT	wos	coss	Scine	Or	OUI	BSOS	N00m	maxt	ndat	ndm	ayams	Domenad:

tutorials: http://hauleweb.rutgers.edu/tutorials

Successfully describes properties of numerous complex materials
(see http://hauleweb.rutgers.edu/)

DMFT_W2K Tutotials and Installation Instructions

- Installation
- Overview
- Tutorial 1 on SrVO_{3}
- Tutorial 2 on LaVO_{3}
- Tutorial 3 on elemental Cerium
- Tutorial 4 on $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$

These are tutorial for the DMFT_W2K code by Kristjan Haule. For questions of

NEW PHYSICS UNCOVERED BY DFT+DMFT

Hund's driven bad semiconducting state in FeSi
Large thermoelectric power

J.M.Tomczak, K. Haule, G. Kotliar, Proceedings of the National Academy of Sciences (2012)

Mott metal insulator transition in FeO at high-T under pressure (geophysics)

K. Ohta, R.E. Cohen, K. Hirose, K. Haule,
K. Shimizu, Y. Ohishi, PRL 2012

Mott transition in RP-Iridates \& Jeff=1/2

H. Zhang, K. Haule and D. Vanderbilt, PRL 111, 246402 (2013),

Hunds metal physics in iron pnictides and large fluctuating moments
M. Liu, et.al., Nature Physics 8, 376-38। (20।2); Z. P.Yin, KH, G. Kotliar, Nature Materials 10 , 932-935 (201I)

Tuesday, June 17, 14

LOCAL DENSITY APPR.

Why is LDA bad when narrow (d, f) are coexisting with wide (s, p) states?

LDA potential depends only on the total density, it does not distinguish between states in narrow and wide bands

DYNAMICAL MEAN FIELD

local correlations on a given site can be computed by solving a quantum impurity model
Functional integral
for the solid: $\quad Z=\int D\left[\psi^{\dagger} \psi\right] e^{-\sum_{i} S_{\text {atom }}(i)-\Sigma_{i \neq j} \int d \tau \psi_{i}^{\dagger}(\tau) H_{i j} \psi_{j}(\tau)}$ approximated by
action local in space
(but not time):

$$
Z=\int D\left[\psi^{\dagger} \psi\right] e^{-\sum_{i} S_{a t o m}(i)-\sum_{i} \int d \tau \int d \tau^{\prime} \psi_{i}^{\dagger}(\tau) \Delta\left(\tau-\tau^{\prime}\right) \psi_{i}\left(\tau^{\prime}\right)}
$$

STATIC MEAN FIELD

Weiss mean field theory for spin systems
Exact in the limit of large connectivity Z

$$
\sum_{i j} J_{i j} \mathbf{s}_{i} \mathbf{S}_{j}
$$

Classical problem of spin in a magnetic field

DMFT SELF CONSIST. C.

$$
\left.\begin{array}{l}
G_{i m p}=G_{i i} \\
\Sigma_{i i}=\Sigma_{i m p}
\end{array}\right] \quad \begin{gathered}
\text { SCC for the Hubbard-like model: } \\
\sum_{\mathbf{k}}\left(i \omega+\mu-\varepsilon_{\mathbf{k}}-\Sigma_{i i}\right)^{-1}=\left(i \omega-E_{i m p}-\Delta-\Sigma_{i i}\right)^{-1}
\end{gathered}
$$

DYNAMICAL MEAN FIELD

Luttinger-Ward Functional:
$\Gamma[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\operatorname{Tr} \log (-G)+\Phi[\{G\}]$

DMFT approx: $\Phi\left[\left\{G_{i j}\right\}\right] \rightarrow \sum \Phi\left[\left\{G_{i i}\right\}\right]$

 : all local diagrains
(fully dressed propagators)

$$
\Phi\left[G_{i i}\right]={ }_{1 / 2}^{0}+1 / 2 i \rightarrow i+1 / \underbrace{i} \circlearrowleft_{i}^{i}+\ldots)_{i}^{i}+\ldots
$$

Sum of all local Feynman diagrams
DMFT funcional:

i is site or cluster

DYNAMICAL MEAN FIELD

To sum this infinite set of diagrams, we turn to the quantum impurity problem!

Exact action for the impurity problem:
the same as
DMFT functional
$\Gamma_{i m p}\left[G_{i m p}\right]=\operatorname{Tr} \log G_{i m p}-\operatorname{Tr}\left(\left(G_{0 i m p}^{-1}-G_{i m p}^{-1}\right) G_{i m p}\right)+\Phi\left[G_{i m p}\right]$ with $\Phi\left[G_{i m p}\right] \quad$ all skeleteon diagrams constructed by by $G_{i m p}$ and U

DMFT SADDLE POINT

The trick to sum the local Feynman diagrams:
$\frac{\delta \Phi\left[\left\{G_{i i}\right]\right\}}{\delta G_{i i}}=\frac{\mathrm{O}}{+\frac{i^{i}}{\longrightarrow}+\frac{{ }^{i}}{i}+\ldots i{ }_{i}^{i}}+\ldots=\frac{\delta \Phi\left[\left\{G_{i m p}\right]\right\}}{\delta G_{i m p}}$
For this to work, we must require: $\quad \begin{aligned} & G_{i i}=G_{i m p} \\ & U_{-i-}=U_{i \underline{i m p}}\end{aligned}$
The DMFT functional is:
$\Gamma_{D M F T}[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\operatorname{Tr} \log (-G)+\sum_{i} \Phi\left[\left\{G_{i i}\right\}\right]$
And from saddle point, we get:

$$
\frac{\delta \Gamma_{D M F T}[\{G\}]}{\delta G_{j k}}=-G_{0}^{-1}+G_{k j}^{-1}+\frac{\delta \Phi\left[\left\{G_{i i}\right\}\right]}{\delta G_{i i}} \delta_{j=i} \delta_{k=i}=0
$$

which is equivalent to: $\Sigma_{i i}^{\text {lattice }}=\Sigma_{i m p}$

HOW LOCAL ARE CORRELATIONS?

Correlations are only local in large d (large connectivity z) hence DMFT exact -- Weiss mean field theory

What about finite D? What about 0?
Molecular hydrogen: H_{2}
H2 molecule:

LOCAL CORRELATIONS

$$
G_{l o c a l}^{i} \equiv \hat{P} G\left(\mathbf{r}-\mathbf{R}_{i}, \mathbf{r}^{\prime}-\mathbf{R}_{i}\right)=\sum_{\alpha \beta} \chi_{\alpha}^{*}(\mathbf{r}) G_{\alpha \beta} \chi_{\beta}\left(\mathbf{r}^{\prime}\right)
$$

\mathbf{R}_{i},vector to the center of atom i
\mathbf{r} vector centered on an atom
Hartree-Fock + DMFT:

$$
\Phi[G] \rightarrow E_{H}[\rho]+E_{X}[\rho]+\sum_{i}\left(\Phi^{D M F T}\left[G_{l o c a l}^{i}\right]-E_{H}\left[\rho_{l o c a l}^{i}\right]-E_{x}\left[\rho_{l o c a l}^{i}\right]\right)
$$

LDA + DMFT:

$$
\left.\begin{array}{rl}
\Phi[G] \rightarrow E_{H}[\rho]+E_{X}[\rho]+\Phi_{C}^{L D A}[\rho]+\sum_{i}\left(\Phi^{D M F T}\left[G_{l o c a l}^{i}\right]-E_{H}\left[\rho_{l o c a l}^{i}\right]-E_{x}\left[\rho_{l o c a l}^{i}\right]-\Phi_{C}^{L D A}\left[\rho_{l o c a l}^{i}\right]\right) \\
E_{H}[\rho]=\frac{1}{2} \int \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & E_{H}\left[\rho_{l o c a l}^{i}\right]
\end{array}\right)=\frac{1}{2} \int \frac{\rho_{l o c a l}^{i}(\mathbf{r}) \rho_{l o c a l}^{i}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, E_{X}\left[\rho_{l o c a l}^{i}\right]=-\frac{1}{2} \int \frac{\rho_{l o c a l}^{i, \sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho_{l o c a l}^{i, \sigma}\left(\mathbf{r}^{\prime} \mathbf{r}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|},
$$

TEST THE IDEA: H2 MOLECULE

Archetypal problem of strong correlations:

$G_{l o c a l}^{i}$?

$$
\begin{array}{r}
G_{l o c a l}^{L} \equiv \chi_{L}^{*}(\mathbf{r})\left\langle\chi_{L}\right| G\left|\chi_{L}\right\rangle \chi_{L}\left(\mathbf{r}^{\prime}\right) \\
G_{l o c a l}^{R} \equiv \chi_{R}^{*}(\mathbf{r})\left\langle\chi_{R}\right| G\left|\chi_{R}\right\rangle \chi_{R}\left(\mathbf{r}^{\prime}\right)
\end{array}
$$

$$
\chi_{L}(\mathbf{r})=\frac{1}{\sqrt{2}}\left(\left|1 \sigma_{g}\left(H^{+}\right)\right\rangle-\left|1 \sigma_{u}\left(H^{+}\right)\right\rangle\right) \quad \begin{gathered}
\text { Can be solved exactly }
\end{gathered} \text { provides good local basis }
$$

$\chi_{L}(\mathbf{r})$

DMFT+ for H 2 molecule

Archetypal problem of strong correlations:

[^0]
SPECTRAL DENSITY FUNCT.T.

In solids, we need further approximations.
Too many functions needed for accurate description of GF.

$$
G\left(\mathbf{r}-\mathbf{R}_{i}, \mathbf{r}^{\prime}-\mathbf{R}_{i}\right)=\sum_{\alpha \beta} \chi_{\alpha}(\mathbf{r}) G_{\alpha \beta} \chi_{\beta}\left(\mathbf{r}^{\prime}\right)
$$

Horrendous impurity problem!

Itinerant states (sp) are very economically described by LDA.

Narrow states (df) are much better described by DMFT

SCREENING IN SOLIDS

Since we remove some itinerant states from the DMFT, they screen DMFT Coulomb
interaction

effective \cup smaller than $\left|/\left|r-r^{\prime}\right|\right.$

Effective U depends on the type of model (which states are included/ excluded in DMFT.)

DFT+DMFT

Very happy marriage:

$$
\Phi[G] \rightarrow \Phi^{L D A}[\rho]+\quad \sum \quad\left(\Phi^{D M F T}\left[G_{l o c a l}^{i}\right]-\Phi^{D C}\left[\rho_{l o c a l}^{i}\right]\right)
$$

Sum of all skeleton diagrams for "most" correlated states

DMFT approximation for
'depends only on the total density locally in 3D-space, functional known only approximately)

DFT+DMFT

DMFT is very expensive!
Can treat:

- 5 orbitals (for transition metal ions)
- 7 orbitals (for lanthanides\&actinides)

Important virtues of DMFT:

- Local theory (to correlated ion)
- Can hybridize with arbitrary number of itinerant states (can integrate out itinerant states)

Scales linearly with the system size
For large unit cell (50atoms+), DFT can be slower than DMFT!

No need to approximate DFT bands structure

TWO ROUTES

How to marry DFT and DMFT?

$$
\rho(\mathbf{r}),-\nabla^{2}+V_{e x t}(\mathbf{r})+V_{x c}(\mathbf{r}) \nleftarrow G_{i \alpha, i \beta}^{D M F T}, \Sigma_{i \alpha, i \beta}^{D M F T}
$$

Downfolding to small window Wannier functions
approximates kinetic energy by a few hopping matrix elements Not very localized corr. states

$$
\begin{aligned}
& -\nabla^{2}+V_{e x t}(\mathbf{r})+V_{x c}(\mathbf{r}) \rightarrow t_{i j}^{\alpha \beta} \\
& G_{i \alpha, i \beta}=\sum_{\mathbf{k}}\left(i \omega+\mu+t_{\mathbf{k}}-\Sigma\right)_{\alpha, \beta}^{-1}
\end{aligned}
$$

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left(i \omega+\mu+\nabla^{2}-V_{e x t}(\mathbf{r})-V_{x c}(\mathbf{r})-\hat{E} \Sigma^{D M F T}\right)^{-1}
$$

$$
G_{i \alpha, i \beta}^{D M F T}=\hat{P} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

Conceptually simple (model hamiltonian) but
Kinetic energy treated exactly, local approximation very good computationally not more expensive

TWO ROUTES

Projection \& Embedding
 $$
\binom{G^{c c}, G^{c r}}{G^{r c}, G^{r r}}=\sum_{\mathbf{k}}\left(\begin{array}{c|c} i \omega+\mu+H_{\mathbf{k}}^{c c}-\Sigma & -V_{\mathbf{k}}^{c r} \\ \hline-V_{\mathbf{k}}^{r c} & i \omega+\mu-H_{\mathbf{k}}^{r r} \end{array}\right)^{-1}
$$

Downfolding
via Wannier functions:

$$
G^{c c}=\sum_{\mathbf{k}}\left(i \omega+\mu+\widetilde{H}_{\mathbf{k}}^{c c}-\Sigma\right)^{-1}
$$

$H_{\mathbf{k}}^{r r}$ can have arbitrary large dimension but it can be exactly integrated out in impurity model

Only $G^{c c}$ is needed in DMFT
The number of correlated states has to be small while the part treated by DFT can be arbitrary large

PROJECT/EMBED

Projection: $G_{\alpha \beta}^{D M F T}=\iint d \mathbf{r} d \mathbf{r}^{\prime} P\left(\alpha \beta, \mathbf{r} \mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$
Embedding: $\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\alpha \beta} E\left(\mathbf{r r}^{\prime}, \alpha \beta\right) \Sigma_{\alpha \beta}$
Dyson Eq.: $\quad G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left(\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\left(i \omega+\mu+\nabla^{2}-V_{e x t}(\mathbf{r})-V_{x c}(\mathbf{r})\right)-\Sigma^{D M F T}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right)^{-1}$

DFT+DMFT

$$
\begin{aligned}
& \text { DFT+DMFT functional: } \\
& \Gamma[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\operatorname{Tr} \log G+\Phi^{L D A}[\{\rho\}]+\Phi^{D M F T}\left[\left\{G_{l o c}\right\}\right]-\Phi^{D C}\left[\left\{\rho_{l o c}\right\}\right] \\
& \quad G_{0}^{-1}=-\frac{\partial}{\partial \tau}+\mu+\nabla^{2}-V_{e x t} \\
& \quad G_{l o c}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\hat{P}_{i} G\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \quad \text { local to the atom and orbital "i"' but dynamic } \\
& \quad \rho(\mathbf{r})=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) G\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \quad \text { static and equal space component }
\end{aligned}
$$

Saddle point Eq.:

$$
\frac{\delta \Gamma[\{G\}]}{\delta G}=-G_{0}^{-1}+G^{-1}+\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) \frac{\delta \Phi^{L D A}[\{\rho\}]}{\delta \rho}+\hat{P}^{-1} \frac{\delta \Phi^{D M F T}\left[\left\{G_{\text {loc }}\right\}\right]}{\delta G_{\text {loc }}}+\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) P^{-1} \frac{\delta \Phi^{D C}\left[\left\{\rho_{\text {loc }}\right\}\right]}{\delta \rho_{\text {loc }}}
$$

SADDLE POINT EQ.: DFT+DMFT

$G_{0}^{-1}-G^{-1}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) \frac{\delta \Phi^{L D A}[\{\rho\}]}{\delta \rho}+\hat{P}^{-1} \frac{\delta \Phi^{D M F T}\left[\left\{G_{l o c}\right\}\right]}{\delta G_{l o c}}+\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) P^{-1} \frac{\delta \Phi^{D C}\left[\left\{\rho_{l o c}\right\}\right]}{\delta \rho_{l o c}}$
$V_{i n t} \equiv \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) \frac{\delta \Phi^{D F T}(\rho)}{\delta \rho}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right)\left(V_{\text {Hartree }}+V_{x c}\right) \quad \begin{gathered}\text { Hartree }+X \text { C-potential } \\ \text { just like in LDA }\end{gathered}$
$\Sigma^{D M F T} \equiv \hat{P}^{-1} \frac{\delta \Phi^{D M F T}\left[G_{l o c}\right]}{\delta G_{l o c}}$
Embedded sum of all local diagrams (just like in DMFT)
$V_{d c} \equiv \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) \hat{P}^{-1} \frac{\delta \Phi^{D C}\left[\rho_{l o c}\right]}{\delta \rho_{l o c}} \quad$ double-counting
Functional can be cast into stationary functional of 2×2 variables: $\Gamma\left[\rho, V_{\text {int }}, G_{l o c}, \Sigma^{D M F T}\right]=-\operatorname{Tr} \log \left(-\frac{\partial}{\partial \tau}+\mu+\nabla^{2}-V_{\text {ext }}-V_{\text {int }}-\Sigma^{D M T}+V_{d c}\right)+$ usual parametrization of $X C$ from the electron gas

$$
+\Phi^{L D A}[\rho]-\operatorname{Tr}\left(V_{i n t} \rho\right)+
$$

from solution of a quantum impurity problem
double-counting

$$
\begin{array}{r}
+\Phi^{D M F T}\left[G_{l o c}\right]-\operatorname{Tr}\left(\Sigma^{D M F T} G_{l o c}\right)- \\
-\Phi_{d c}\left(\rho_{l o c}\right)+\operatorname{Tr}\left(V_{d c} \rho_{l o c}\right)
\end{array}
$$

PROJECT/EMBED:WHAT IS
 \qquad

Definition of projection:

$$
G_{\alpha \beta}^{l o c}=\iint d \mathbf{r} d \mathbf{r}^{\prime} P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

©
 88
 $\hat{P}_{i}^{-1} \equiv \hat{E}_{i}$ embeddin

Saddle point Eq. give connection between P \& E:

$$
\frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o}\right\}\right]}{\delta G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}=\sum_{\alpha \beta} \frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o c}\right\}\right]}{\delta G_{\alpha \beta}^{l o c}} \frac{\delta G_{\alpha \beta}^{l o c}}{\delta G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}=\sum_{\alpha \beta} \frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o c}\right\}\right]}{\delta G_{\alpha \beta}^{l o c}} P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right)
$$

Definition of Embedding is:

$$
\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum \Sigma \quad P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right)
$$

$$
\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \equiv \sum E\left(\mathbf{r r}^{\prime}, \alpha \beta\right) \Sigma
$$

Hence the Embedding is:

$$
E\left(\mathbf{r r}^{\prime}, \alpha \beta\right)=P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right)
$$

We need to define Projection operator only!

PROJECT/EMBED

Properties of projection/embeding
first embed $\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\alpha \beta} \Sigma_{\alpha \beta} P\left(\beta \alpha, \mathbf{r}^{\prime} \mathbf{r}\right) \quad \hat{\boldsymbol{p}} * \hat{\boldsymbol{E}}=\boldsymbol{I}$
then project $\Sigma_{\alpha \beta}=\iint P\left(, \mathbf{r}^{\prime} \mathbf{r}\right) \Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d \mathbf{d r d r}$
first project $\left.\begin{array}{rlll}\iint & \mathbf{r}^{\prime} \mathbf{r} & \mathbf{r r}^{\prime} & \mathbf{r}^{\prime} \\ \sum_{\alpha \beta} & { }_{\alpha \beta} & \mathbf{r}^{\prime} \mathbf{r}\end{array}\right\} \hat{E} * \hat{P} \neq I$

$$
(\hat{E} * \hat{P}) *(\hat{E} * \hat{P})=\hat{E} * \hat{P}
$$

Property of a true projector
Projected local
Green's function:

$$
G_{l o c a l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\hat{E} * \hat{P} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

REQUIREMENT FOR CAUSAL DMFT EQ.

$$
\begin{aligned}
& \text { DMFT SCC: } \\
& G_{i m p}=\frac{1}{\omega-E_{i m p}-\Sigma_{-}-\Delta}=\hat{P} \frac{1}{\omega+\nabla^{2}-V_{e x t}-V_{H}-V_{x c}-\hat{E}\left(\Sigma-V_{d c}\right)}=G_{l o c a l} \\
& \text { Additional }
\end{aligned}
$$

requirement for

If projection separable: $P\left(\alpha \beta, \mathbf{r r}^{\prime}\right)=U^{\dagger}(\alpha \mathbf{r}) U\left(\mathbf{r}^{\prime} \beta\right)$
requirement $\hat{P} \frac{1}{\hat{E}}=U^{\dagger}(\alpha \mathbf{r}) U^{\dagger^{-1}}\left(\mathbf{r} \mathbf{\alpha}^{\prime}\right) U^{-1}\left(\beta^{\prime} \mathbf{r}^{\prime}\right) U\left(\mathbf{r}^{\prime} \beta\right)=I$ satisfied

REQUIREMENT FOR STATIONARITY (ENERGY)

Projector should not depend on the solution

Return to definition of projector:

$$
G_{\alpha \beta}^{l o c}=\iint d \mathbf{r} d \mathbf{r}^{\prime} P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

Return to saddle point Eq.:

$$
\frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o c}\right\}\right]}{\delta G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}=\sum_{\alpha \beta} \frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o c}\right\}\right]}{\delta G_{\alpha \beta}^{l o c}} \frac{\delta G_{\alpha \beta}^{l o c}}{\delta G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}=\sum_{\alpha \beta} \frac{\delta \Phi^{D M F T}\left[\left\{G_{\alpha^{\prime} \beta^{\prime}}^{l o c}\right\}\right]}{\delta G_{\alpha \beta}^{l o c}} P\left(\alpha \beta, \mathbf{r}^{\prime} \mathbf{r}\right)
$$

Here we implicitly assumed that $\frac{\delta P}{\delta G}=0$

POSSIBLE PROJECTORS

Wannier orbitals: $\quad\left|W_{\mathbf{k} \alpha}\right\rangle=\sum_{i \in L o w E}\left|\psi_{i \mathbf{k} \boldsymbol{k}}\right\rangle\left\langle\psi_{i \mathbf{k}}\right|\left|\chi_{\alpha^{\prime}}\right\rangle \frac{1}{\sqrt{\sum_{j}\left\langle\chi_{\alpha}\right|\left|\psi_{\mathbf{k} j}\right\rangle\left\langle\psi_{\mathbf{k} \boldsymbol{j}}\right|\left|\chi_{\alpha^{\prime}}\right\rangle}}$

$$
P\left(\alpha \beta, \mathbf{r r}^{\prime}\right)=\sum_{\mathbf{k}} W_{\mathbf{k} \alpha}^{*}(\mathbf{r}) W_{\mathbf{k} \beta}\left(\mathbf{r}^{\prime}\right)
$$

$\psi_{i \mathbf{k}}$ KS orbitals
χ_{α} localized orbitals
Stationarity: $\quad \frac{\delta P}{\delta G}=0$

LDA $+\cup$ projector: $\quad P^{0}\left(l m, l m^{\prime}, \mathbf{r r}^{\prime}\right)=Y_{l m}(\hat{\mathbf{r}}) \delta\left(r-r^{\prime}\right) Y_{l m^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right)$
Causal DMFT equations: $\quad \int_{\mathbf{r r}^{\prime}} P\left(\alpha \beta, \mathbf{r r}^{\prime}\right)\left(\sum_{\alpha^{\prime} \beta^{\prime}} E\left(\mathbf{r r}^{\prime}, \beta^{\prime} \alpha^{\prime}\right) \Sigma_{\alpha^{\prime} \beta^{\prime}}\right)_{\mathbf{r}^{\prime} \mathbf{r}}^{-1}=\Sigma_{\alpha \beta} \quad\left(\hat{P} \frac{1}{\hat{E}}=I\right)$

Possible choice: $P\left(l m, l m^{\prime}, \mathbf{r r}^{\prime}\right)=Y_{l m}(\hat{\mathbf{r}}) R_{l}^{L D A}(\mathbf{r}) R_{l}^{L D A}\left(\mathbf{r}^{\prime}\right) Y_{l m^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right)$

LW functional:
$\Gamma_{i m p}\left[\left\{G_{i m p}\right\}\right]=\operatorname{Tr} \log \left(-G_{i m p}\right)-\operatorname{Tr}\left(\left(i \omega-\varepsilon_{i m p}-\Delta\right) G_{i m p}\right)+\Phi^{i m p}\left[\left\{G_{i m p}\right\}\right]$ with $\Phi\left[G_{i m p}\right]$ sum of all skeleteon diagrams.

In the DMFT solution we can compute also the free energy:

$$
\begin{array}{r}
F^{D F T+D M F T}=\operatorname{Tr} \log (G)-\operatorname{Tr} \log \left(G_{i m p}\right)+F_{i m p}+E^{H}[\rho]+\Phi^{x c}[\rho]-\operatorname{Tr}\left(\left(V_{H}+V_{x c}\right) \rho\right) \\
-\Phi^{D C}\left[\rho_{l o c}\right]+\operatorname{Tr}\left(V_{d c} \rho_{l o c a l}\right) \\
\text { Where: } \begin{array}{c}
F_{i m p}=E_{i m p}-T S_{i m p} \\
E_{i m p}=\operatorname{Tr}\left(\left(\Delta+\varepsilon_{i m p}-\omega_{n} \frac{\partial \Delta}{\partial \omega_{n}}\right) G_{i m p}\right)+\frac{1}{2} \operatorname{Tr}\left(\Sigma_{i m p} G_{i m p}\right)
\end{array}
\end{array}
$$

CONTINUOUS TIME QMC

Method of choice for DFT+DMFT: CTQMC in hybridization P.Werner, PRL (2007); N. Rubtsov PRB 72, 35 I22 (2005); K.H. Phys. Rev. B 75, I55II3 (2007) ;

General impurity problem:

$$
Z=\int D\left[\psi^{\dagger} \psi\right] e^{-S_{a t o m}-\int_{0}^{\beta} d \tau \int_{0}^{\beta} d \tau^{\prime} \sum_{\alpha \alpha^{\prime}} \psi_{\alpha}^{\dagger}(\tau) \Delta\left(\tau-\tau^{\prime}\right) \psi_{\alpha^{\prime}}\left(\tau^{\prime}\right)}
$$

Power expansion in terms Δ, gives series of Feynman diagrams:
$Z=Z_{\text {atom }} \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d \tau_{1} \int_{0}^{\beta} d \tau_{1}^{\prime} \cdots \int_{0}^{\beta} d \tau_{k} \int_{0}^{\beta} d \tau_{k}^{\prime} \sum_{\alpha_{1} \alpha_{1}^{\prime}, \alpha_{2}, \alpha_{2}^{\prime}, \cdots \alpha_{k} \alpha_{k}^{\prime}}\left\langle T_{\tau} \psi_{\alpha_{1}^{\prime}}\left(\tau_{1}^{\prime}\right) \psi_{\alpha_{1}}^{\dagger}\left(\tau_{1}\right) \cdots \psi_{\alpha_{k}^{\prime}}\left(\tau_{k}^{\prime}\right) \psi_{\alpha_{k}}^{\dagger}\left(\tau_{k}\right)\right\rangle_{a t o m} \times$
Metropolis sampling over the diagrams, very efficient
because perturbation order is Gaussian in order $k$$\quad \frac{1}{k!} \operatorname{Det}\left(\begin{array}{ccc}\Delta_{\alpha_{1} \alpha_{1}^{\prime}}\left(\tau_{1}, \tau_{1}^{\prime}\right) & \Delta_{\alpha_{2} \alpha_{2}^{\prime}}\left(\tau_{2}, \tau_{2}^{\prime}\right) & \ldots \\ \ldots & \ldots & \ldots \\ \ldots & \cdots & \cdots \\ \Delta_{\alpha_{k} \alpha_{1}^{\prime}}\left(\tau_{k}, \tau_{1}^{\prime}\right) & \cdots & \cdots \\ \Delta_{\alpha_{k} \alpha_{k}^{\prime}}\left(\tau_{k}, \tau_{k}^{\prime}\right)\end{array}\right)$ peaked at K/T.
Virtues:

- Exact method: samples all diagrams!
- Allows correct treatment of multiplets

BEST ALGORITHM FOR CTQMC

Lazy-Skip list implementation

Skip-list:
$F_{8} \times F_{7} \times F_{6} \times F_{5} \times F_{4} \times F_{3} \times F_{2} \times F_{1}$

Like transportation infrastructure, each layer has some extra express lanes for faster updates : update time of the order of $\log (\mathrm{N})$

Lazy evaluation of trace:

$$
\text { expensive part: } \operatorname{Trace}=\operatorname{Tr}\left(e^{-\Delta \tau_{1} H} \psi_{1}^{\dagger} e^{-\Delta \tau_{2} H} \psi_{2} e^{-\Delta \tau_{3} H} \psi_{3}^{\dagger} \cdots e^{-\Delta \tau_{N} H}\right)
$$

simple estimate of
upper bound

$$
\begin{aligned}
& \text { Either very large or very small } \\
& \qquad e^{-H \beta} \gg 1 \quad e^{-H \beta} \ll 1
\end{aligned}
$$

recursively can estimate better and better bound

$$
A<\text { Trace }<B^{\stackrel{p_{\min } p_{\max } \downarrow}{ }}
$$

DOUBLE COUNTING

$\Phi[G]=\Phi^{L D A}[\rho]+\sum_{i \in c o r r} \Phi^{D M F T}\left[G_{l o c a l}^{i}\right]-\Phi^{D C}\left[\rho_{l o c a l}^{i}\right]$
Sum of all skeleton diagrams local to correlated ions

LDA functional

DMFT approximation of the LDA functional replacing $\begin{array}{ll}? ? ? ? & \rho \rightarrow \rho \\ & \hat{V}_{C} \rightarrow \hat{U} \\ d \mathbf{r} \rho(\mathbf{r}) \varepsilon_{x c}\left(\rho(\mathbf{r}), \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right)\end{array}$

LDA: $\quad \Phi\left[G, \hat{V}_{C}\right] \rightarrow \Phi^{L D A}\left[\rho, \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right]$
with $\quad \Phi^{L D A}\left[\rho, \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right]=\frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\int d \mathbf{r} \rho(\mathbf{r}) \varepsilon_{x c}\left(\rho(\mathbf{r}), \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right)$
DMFT: $\quad \Phi\left[G, \hat{V}_{C}\right] \rightarrow \Phi\left[G_{\text {local }}, \hat{U}_{C}\right] \quad \Phi\left[G_{i i}\right]=$ use all graps (just like in exact solution) but use
use only $G_{i i}$ and U_{C} instead of full G and V_{C}
intersection: $\quad \Phi^{D C}\left(\rho_{l o c a l}\right)=E_{H}\left[\rho_{\text {local }}, \hat{U}_{C}\right]+\int d \mathbf{r} \rho_{\text {local }}(\mathbf{r}) \varepsilon_{x c}\left(\rho_{\text {local }}(\mathbf{r}), \hat{U}_{C}\right)$ electron gas interacting with screened Coulomb interaction

No screening in molecule

Molecular hydrogen: H_{2}

$$
\Phi^{D C}\left[\rho_{\text {local }}^{i}\right]=\Phi^{H}\left[\rho_{\text {local }}^{i}\right]+\Phi^{X}\left[\rho_{\text {local }}^{i}\right]+\Phi^{L D A, C}\left[\rho_{\text {local }}^{i}\right]
$$

DMFT-like approximation DMFT-like DMFT-like approximation for Hartree exchange for LDA correlations

$$
\begin{aligned}
& \Phi^{H}\left[\rho_{l o c a l}^{i}\right]=\frac{1}{2} \int_{\mathbf{r r}^{\prime}} \rho_{\text {local }}^{i}(\mathbf{r}) U_{C}\left(\underline{\mathbf{r}}-\mathbf{r}^{\prime}\right) \rho_{\text {local }}^{i}\left(\mathbf{r}^{\prime}\right) \\
& \Phi^{X}\left[\rho_{l o c a l}^{i}\right]=-\frac{1}{2} \sum_{\sigma} \int_{\mathbf{r r}^{\prime}} \rho_{l o c a l}^{\sigma, i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) U_{C}\left(\stackrel{\left.\mathbf{r}-\mathbf{r}^{\prime}\right) \rho_{l o c a l}^{\sigma, i}\left(\mathbf{r}^{\prime}, \mathbf{r}\right) \text { Coulomb }}{\text { bare }}\right. \\
& \Phi^{L D A, C}\left[\rho_{l o c a l}^{i}\right]=\int_{\mathbf{r}} \varepsilon_{c}\left(\rho_{l o c a l}^{i}(\mathbf{r})\right) \rho_{\text {local }}^{i}(\mathbf{r}) .
\end{aligned}
$$

Juho Lee, KH, arXiv: 1403.2474

IN SOLIDS HARDER | SCREENING

approximation:Yukawa form

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow \frac{e^{-\lambda\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \equiv U_{l o c a l}
$$

Screening computed by GW or

 constrained RPADMFT approximation:

$$
\begin{aligned}
\Phi[\{G\}] & \rightarrow^{D M F T} \rightarrow \Phi\left[\left\{G_{l o c a l}\right\}\right] \quad \text { which means } \quad G \rightarrow^{D M F T} \rightarrow G_{l o c a l} \\
& \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow{ }^{D M F T} \rightarrow \frac{e^{-\lambda\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi^{D C}=\sum_{i} \Phi_{\lambda}^{H}\left[\rho_{l o c a l}^{i}\right]+\Phi_{\lambda}^{L D A, X C}\left[\rho_{l o c a l}^{i}\right] \\
& \Phi_{\lambda}^{L D A, X C}\left[\rho_{l o c a l}^{i}\right]=\int_{\mathbf{r}} \varepsilon_{x c}\left(\rho_{l o c a l}^{i}(\mathbf{r}), \frac{e^{-\lambda|\mathbf{R}|}}{|\mathbf{R}|}\right) \rho_{l o c a l}^{i}(\mathbf{r})
\end{aligned}
$$

This form of double-counting not yet implemented for solids

PHYSICS OF DC

Rare Earths:

WHAT IS COULOMB U?

Coulomb interaction between electrons:

$$
\hat{U}=\frac{1}{2} \int d \mathbf{r} \int d \mathbf{r}^{\prime} \sum_{\sigma \sigma^{\prime}} \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right) \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right) \psi_{\sigma}(\mathbf{r})
$$

Expansion of field operator $\psi_{\sigma}(\mathbf{r})=\sum_{L} \phi_{L}(\mathbf{r}) c_{L \sigma}$ where $\phi_{L}(\mathbf{r})$ set of functions

$$
\begin{aligned}
\hat{U}= & \frac{1}{2} \sum_{L_{1}, L_{2}, L_{3}, L_{4}, \sigma, \sigma^{\prime}} U_{L_{1}, L_{2}, L_{3}, L_{4}} c_{L_{1} \sigma}^{\dagger} c_{L_{2} \sigma^{\prime}}^{\dagger} c_{L_{3} \sigma^{\prime}} c_{L_{4} \sigma} \\
& \text { where } U_{L_{1}, L_{2}, L_{3}, L_{4}}=\int d \mathbf{r} d \mathbf{r}^{\prime} \phi_{L_{1}}^{*}(\mathbf{r}) \phi_{L_{2}}^{*}\left(\mathbf{r}^{\prime}\right) \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \phi_{L_{3}}\left(\mathbf{r}^{\prime}\right) \phi_{L_{4}}(\mathbf{r})
\end{aligned}
$$

Expansion in spherical harmonics: $\quad \phi_{L}(\mathbf{r})=R_{l}(r) Y_{L}(\hat{\mathbf{r}})$
Exact relation:

$$
\begin{gathered}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{k, m} \frac{4 \pi}{2 k+1} \frac{r^{k}}{r_{>}^{k+1}} Y_{k m}(\hat{\mathbf{r}}) Y_{k m}^{*}\left(\hat{\mathbf{r}^{\prime}}\right) \\
U_{L_{1}, L_{2}, L_{3}, L_{4}}=\sum_{k} \frac{4 \pi}{2 k+1}\left\langle Y_{L_{1}}\right| Y_{k m}\left|Y_{L 4}\right\rangle\left\langle Y_{L_{2}}\right| Y_{k m}^{*}\left|Y_{L 3}\right\rangle F_{l_{1}, l_{2}, l_{3}, l_{4}}^{k} \\
\text { Slater integrals: } \quad F_{l_{1}, l_{2}, l_{3}, l_{4}}=\int r^{2} d r \int r^{\prime^{\prime} d r^{\prime}} \frac{r_{k}^{k}}{r_{>}^{k+1}} R_{l_{1}}(r) R_{l_{4}}(r) R_{l_{2}}\left(r^{\prime}\right) R_{l_{3}}\left(r^{\prime}\right)
\end{gathered}
$$

Slater Form:

WHAT IS COULOMB U?

Slater Form: $\quad U_{L_{1}, L_{2}, L_{3}, L_{4}}=\sum_{k} \frac{4 \pi}{2 k+1}\left\langle Y_{L_{1}}\right| Y_{k m}\left|Y_{L 4}\right\rangle\left\langle Y_{L_{2}}\right| Y_{k m}^{*}\left|Y_{L 3}\right\rangle F_{l_{1}, l_{2}, l_{3}, l_{4}}^{k}$

Special case

$$
l_{1}=l_{2}=l_{3}=l_{4}
$$

$$
U_{m_{1} m_{2} m_{3} m_{4}}=\sum_{k} \frac{4 \pi}{2 k+1}\left\langle Y_{l m_{1}}\right| Y_{k, m_{1}-m_{4}}\left|Y_{l m_{4}}\right\rangle\left\langle Y_{l m_{2}}\right| Y_{k, m_{3}-m_{2}}^{*}\left|Y_{l m_{3}}\right\rangle F_{l}^{k}
$$

for $1=0: \quad\left\langle\frac{1}{\sqrt{4 \pi}}\right| Y_{k, m}\left|\frac{1}{\sqrt{4 \pi}}\right\rangle=\delta_{k=0} \frac{1}{\sqrt{4 \pi}} \quad$ hence only $k=0$ is finite for $\mathrm{I}=1$: $\left.\quad \begin{gathered}x \\ \langle y| Y_{k, m} \mid \\ z\end{gathered} \right\rvert\,=\delta_{k=0} \ldots+\delta_{k=2} \ldots$. hence only $\mathrm{k}=0,2$ is finite for $\mathrm{I}=2$: \quad only $\mathrm{k}=0,2,4$ is finite $\quad F^{0}, F^{2}, F^{4}$ for $\mathrm{I}=3$: \quad only $\mathrm{k}=0,2,4,6$ is finite $\quad F^{0}, F^{2}, F^{4}, F^{6}$

ORDER OF MAGNITUDE

$$
F_{l}^{0}=2 \int_{0}^{\infty} r^{2} d r R_{l}^{2}(r) \frac{1}{r} \int_{0}^{r}{r^{\prime}}^{2} d r^{\prime} R_{l}^{2}\left(r^{\prime}\right) \approx\left\langle\frac{e^{2}}{r}\right\rangle
$$

lets take: $r \approx r_{B} \quad$ gives: $\quad F_{0} \approx 27.2 \mathrm{eV}$
lets take $\mathrm{H} \mid \mathrm{s}: \quad R(r)=\sqrt{\frac{4}{r_{B}^{3}}} e^{-r / r_{B}}$

$$
\begin{aligned}
& F_{l}^{2}=2 \int_{0}^{\infty} r^{2} d r R_{l}^{2}(r) \frac{1}{r^{3}} \int_{0}^{r} r^{\prime 4} d r^{\prime} R_{l}^{2}\left(r^{\prime}\right) \approx 0.26\left\langle\frac{e^{2}}{r}\right\rangle \approx 7.1 \mathrm{eV} \\
& F_{l}^{4}=2 \int_{0}^{\infty} r^{2} d r R_{l}^{2}(r) \frac{1}{r^{5}} \int_{0}^{r}{r^{\prime}}^{6} d r^{\prime} R_{l}^{2}\left(r^{\prime}\right) \approx 0.16\left\langle\frac{e^{2}}{r}\right\rangle \approx 4.4 \mathrm{eV}
\end{aligned}
$$

for d-shell we usually define: $F^{2}=\frac{14}{1.625} J_{H} \quad$ and $\quad F^{4}=\frac{14}{2.6} J_{H}$ hence $J_{H} \approx 0.82$

1) F^{2} and F^{4} are not small. Importance of Hunds coupling
2) F^{0} is 2-4 times too large, JH almost correct

Rare Earths:

Experiment:
F^{2} and F^{4} screened by 20\% F^{0} screened much more

COULOMB U

Exact diagonalization of the atom gives quite precise position of the peaks

F2 and F4 ensure Hunds (1,2) rules:
$1^{\text {st) }}$) Maximize the total spin-spin parallel electrons must be in different spatial orbitals which reduces the Coulomb repulsion.
$\left.2^{\text {nd }}\right)$ Rule then maximize the total orbital angular momentum L . This involves large m quantum numbers and lots of angular lobes and therefore electrons can avoid each other and lower Coulomb repulsion
$\left.3^{\text {rd }}\right)<$ half filled shell $\mathrm{J}=\mathrm{L}-\mathrm{S}>$ half filled shell $\mathrm{J}=\mathrm{L}+\mathrm{S}$ (Result of spin orbit coupling)

SCREENING OF COULOMB U IN FE-PNICTIDES

Kutepov, KH, S.Y. Savrasov, G. Kotliar, Phys. Rev. B 82, 045105 (2010)..

The method of choice:

- extended DMFT equations
- constrain RPA

HOWTO COMPUTE SCREENING?

Within RPA world, the "fully screened" interaction W is the sum of bubbles:

SIMPLEST CASE, SINGLE BAND

Lindhard formula:

$$
\Pi_{0}^{R P A}(\mathbf{q}, \omega)=\sum_{\mathbf{k}} \frac{f\left(\varepsilon_{\mathbf{k}}\right)-f\left(\varepsilon_{\mathbf{k}+\mathbf{q}}\right)}{\omega-\varepsilon_{\mathbf{k}+\mathbf{q}}+\varepsilon_{\mathbf{k}}}
$$

Low energy, long $\omega \rightarrow 0 \mathbf{q} \rightarrow 0$
wavelength limit $\quad \Pi_{0}^{R P A}(\mathbf{q}, \omega)=\sum_{\mathbf{k}} \frac{f\left(\varepsilon_{\mathbf{k}}\right)-f\left(\varepsilon_{\mathbf{k}+\mathbf{q}}\right)}{\varepsilon_{\mathbf{k}}-\varepsilon_{\mathbf{k}+\mathbf{q}}}=\sum_{\mathbf{k}}\left(\frac{\partial f}{\partial \varepsilon_{\mathbf{k}}}\right)=-D(\omega=0)$

Interaction screened by Yukawa form

$$
W_{\mathbf{q} \rightarrow 0}=\frac{4 \pi e_{0}^{2}}{|\mathbf{q}|^{2}+4 \pi e_{0}^{2} D(0)} \quad W\left(\mathbf{r r}^{\prime}\right) \approx \frac{e^{-\sqrt{4 \pi e_{0}^{2} D(0)}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

HOWTO COMPUTE SCREENING?

$$
W_{\mathbf{q}}=\left(V_{\mathbf{q}}^{-1}-\Pi_{\mathbf{q}}\right)^{-1}
$$

In exact theory, the "fully screened" interaction is vertex corrected:

$$
W=----=\frac{1}{(--)^{-1}-\cdots}
$$

$\Pi_{\mathbf{q}}$ in general different from $\Pi_{\mathbf{q}}^{0}$
However, U is not the "fully screened" interaction! U is screened by the degrees of freedom not taken into account by DMFT!

SCREENING OF COULOMB

Important: Only screening processes excluded in DMFT screen U!

Thought experiment:

Imagine we know the exact "fully screened interaction" W. We also solve the problem by DFT+DMFT at chosen U. We compute W within DFT+DMFT and when W within DFT+DMFT matches the exact W (projected on DMFT degrees of freedom) we found correct U.

$$
W^{D M F T}=\left(U^{-1}-\Pi_{D M F T}\right)^{-1}=P \otimes P W^{\text {exact }}
$$

SCREENING OF COULOMB U

Kutepov, KH, S.Y. Savrasov, G. Kotliar, Phys. Rev. B 82, 045105 (2010)..

We solve the band structure problem with RPA (actually called GW)!
We also solve the DMFT problem with RPA (not with DMFT)

$$
\begin{aligned}
W^{\text {model-RPA }}= & \left(U^{-1}-\Pi^{\text {model-RPA }}\right)^{-1}=P \otimes P W^{G W} \\
& \text { with } \quad \Pi^{\text {model-RPA }}=G_{l o c a l} * G_{l o c a l}
\end{aligned}
$$

CONSTRAINED RPA

F. Aryasetiawan et.al., PRB 70, 195104 (2004)

 Similar idea but cutting in space of bands, instead of projectors

$$
U^{-1}=V_{\mathbf{q}}^{-1}-\Pi_{\mathbf{q}}^{r e s t}
$$

Good for Hubbard model U.
Not good for all electron DFT+DMFT:"rest" states that have no explicit U in
DMFT, but interact through DFT by Hartree and XC functional and screen W. In materials with entangled bands, it leads to ridiculous small U's

Cerium alpha phase $\mathrm{U}<0.5 \mathrm{eV}$.

IMPORTANCE OF HUNDS COUPLING

- VO_{2} (rutile metal)
- $\mathrm{V}_{2} \mathrm{O}_{3}$ (metal)
- κ-(BEDT-TTF) $)_{2} \mathrm{Cu}\left[\mathrm{N}(\mathrm{CN})_{2}\right] \mathrm{Br}$
$\triangle \mathrm{La}_{2 \cdot \mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4}(\mathrm{x}=0.1)$
$4 \mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4}(\mathrm{x}=0.15)$
$\nabla \mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4}(\mathrm{x}=0.2)$
* $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$
$+\mathrm{Nd}_{2-\mathrm{x}} \mathrm{Ce}_{\mathrm{x}} \mathrm{CuO}_{4}(\mathrm{x}=0.1)$
$\times \mathrm{Nd}_{2-\mathrm{x}} \mathrm{Ce}_{\mathrm{x}} \mathrm{CuO}_{4}(\mathrm{x}=0.15$
* MgB^{2}

Most of theorists at the beginning of iron era (2008) were proposing weak correlations in pnictides
mass enhancements of optimally doped cuprates and iron pnictides very similar.
D. Basov, R. Averitt, D. van der Marel, M. Dressel, KH, RMP, 83, 471 (2011)

One particle spectra of Hunds metals (pnictides)

No clear Hubbard band in one particle spectra Many theorists took this is a sign of weak correlation strength

Importance of Hund's rule in pnictides: Hunds Metals

Significant Correlations in pnictides: effective mass 3-5 band mass KH, J.H. Shim, and G. Kotliar, PRL I00, 226402 (2008)

Hubbard U not important
The Hund's coupling brings correlations!
KH, G. Kotliar, arXiv:0805.0722 (2008)
New Journal of Physics, 11025021 (2009).

$$
\begin{aligned}
& U=4 \mathrm{eV} \\
& \mathrm{~J}=0.4
\end{aligned}
$$

For $\mathrm{J}=0$ there is negligible mass enhancement at $\mathrm{U} \sim \mathrm{W}$!

Histogram of Hunds metals

In oxydes, only a few atomic states (one in each valence) with significant Probability

In pnictides, many states with large probability -> charge fluctuations are not efficiently blocked by Coulomb U. (more itinerant system)

States with high spin more probable than those with low spin -> gives rise to non-Fermi liquid physics at intermediate temperatures, and heavy quasiparticles at
 Low temperatures.

Mass enhancement \& Magnetic moment

Z. P.Yin, KH, G. Kotliar, Nature Materials (201I)

Correlation diagram of Hund's metals

Mass enhancement substantial Electrons have dual nature

Good agreement with experiment!(fixed $\mathrm{U}=5 \mathrm{eV}, \mathrm{J}=0.8 \mathrm{eV}$ determined by first principles PRB 82. $045105(2010)$).

Static ordered moment within LDA+DMFT

Static ordered moment very small
moment<->mass

Some similarity, but also many differences!
NO FITTING PARAMETER

Large fluctuating moment

Fluctuating moment by neutrons: $\left\langle\mu^{2}\right\rangle=\int \frac{d \omega}{\pi} n(\omega) \chi^{\prime \prime}(\omega) .{ }_{\text {Liu, et.al., Nature Physics }}$ 8,376-381 (2012) Experiment by Pengcheng Dai

Large fluctuating moment can not be explained by a purely itinerant model - property of Hundsness!
The DMFT account for a dual nature of electrons in Hund's metals: itinerant and localized nature.

Dynamical structure factor of $\mathrm{BaFe}_{2} \mathrm{As}_{2}$

$S(q, \boldsymbol{\omega})$ in paramagnetic phase similar to AFM phase!
No anysotropy needed (above T_{S}) to explain neutrons.

Theoretical Magnetic excitations

Doping variation

electron doping
$T_{C}<2 K \quad T_{C}=20 K \quad A F M$

hole doping
$T_{C}=39 K \quad T_{C}=3.5 \mathrm{~K}$
electron overdoped: low energy spin excitations very weak and become incommensurate

Optimally doped:
Commensurate low energy strong low energy strong high energy
hole overdoped: low energy spin excitations weaker and incommensurate

- 备 + O http://hauleweb.rutgers.edu/downloads/

Download the DMFT-Wien2K source code

TUTORIALS

http://hauleweb.rutgers.edu/tutorials/

Ө Ө Ө
DMF

\Leftrightarrow T DMFT_W2K Tutorials

DMFT_W2K Tutotials and Installation Instructions

- Installation
- Overview
- Tutorial 1 on SrVO_{3}
- Tutorial 2 on LaVO_{3}
- Tutorial 3 on elemental Cerium
- Tutorial 4 on $\mathrm{Sr}_{2} \underline{\mathrm{IrO}}_{4}$

These are tutorial for the DMFT_W2K code by Kristjan Haule. For questions of comment:
Several tutorials to get you familiar with the code. Starts with very simple cubic system, to Mott insulator that requires rotated local basis (LaVO3) to most sophisticated 5d system which requires rotation and local transformation to J= I/2-like states.

DFT PART

$$
\frac{\underbrace{\text { init_lapw }: \rho^{\text {atom }}(\mathbf{r})}}{\downarrow} \quad \text { run_lapw }==) \times \operatorname{lapw} 0: V_{\text {ext }}(\mathbf{r}) \rho(\mathbf{r}) \rightarrow V_{K S}(\mathbf{r})
$$

\times mixer: $\rho^{\text {val }}+\rho^{\text {core }}, \rho^{\text {old }}(\mathbf{r}) \rightarrow \rho^{\text {new }}(\mathbf{r})$
\times core $: V_{K S}(\mathbf{r}), V_{\text {ext }}(\mathbf{r}) \rightarrow \rho_{\text {core }}(\mathbf{r}), E_{\text {core }}$
\times lapwl: $\quad V_{K S}(\mathbf{r}), V_{e x t}(\mathbf{r}) \rightarrow \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T}$

\times lapwso : adds spin-orbit

$$
\times \operatorname{lapw} 2: \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow \rho^{v a l}(\mathbf{r}), E_{\text {valence }}
$$

DFT+DMFT COMBINED

run_lapw : $\rho^{D F T}(\mathbf{r})$
run_dmft.py $==\quad \times \operatorname{lapw} 0: V_{e x t}(\mathbf{r}) \rho(\mathbf{r}) \rightarrow V_{K S}(\mathbf{r})$
\times mixer: $\rho^{\text {val }}+\rho^{\text {core }}, \rho^{\text {old }}(\mathbf{r}) \rightarrow \rho^{\text {new }}(\mathbf{r}) \quad \times \operatorname{lapW} \mid: V_{K S}(\mathbf{r}), V_{\text {ext }}(\mathbf{r}) \rightarrow \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T}$ \times lapwso: adds spin-orbit x_dmft.py dmft2 :
$\Sigma^{D M F T}(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow \rho^{v a l}(\mathbf{r}), E_{\text {valence }}$
X_dmft.py dmft l:
\times core $: V_{K S}(\mathbf{r}), V_{\text {ext }}(\mathbf{r}) \rightarrow \rho_{\text {core }}(\mathbf{r}), E_{\text {core }}$

impurity solver: CTQMC,OCA,NCA

$$
\Delta(\omega), E_{i m p} \rightarrow \Sigma(\omega), G^{D M F T}
$$

dmft I step

$$
\begin{gathered}
\text { input } \\
\Sigma(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow G_{\text {local },} \Delta(\omega), E_{i m p}
\end{gathered}
$$

I) Constructs projector: $\quad P\left(\mathbf{r r}^{\prime}, \tau L L^{\prime}\right) \approx Y_{L}\left(\hat{\mathbf{r}}_{\tau}\right) \delta\left(r_{\tau}-r_{\tau}^{\prime}\right) Y_{L^{\prime}}^{*}\left(\hat{\mathbf{r}}_{\tau}^{\prime}\right)$
2) Embeds self-energy: $\quad \bar{\Sigma}_{\mathbf{k}, i j}(\omega)=\sum_{\tau, L_{1} L_{2}} P_{\mathbf{k} \tau}\left(j i, \tau L_{2} L_{1}\right)\left(\Sigma_{L_{1} L_{2}}^{\tau}(\omega)-E_{d c}^{\tau}\right)$
3) Calculates local Green's function and hybridization function

$$
\begin{aligned}
G_{l o c a l}^{\tau} L_{L^{\prime}}^{\tau}=\sum_{\mathbf{k} i j} P_{\mathbf{k} \tau}\left(i j, L L^{\prime}\right)[(i \omega+\mu & \left.\left.-\epsilon_{\mathbf{k}}-\bar{\Sigma}_{\mathbf{k}}(\omega)\right)^{-1}\right]_{j i} \\
& =\left[\frac{1}{i \omega-E_{i m p}^{\tau}-\Sigma^{\tau}(\omega)-\Delta^{\tau}(\omega)}\right]_{L L^{\prime}}
\end{aligned}
$$

dmft2 step

$$
\begin{array}{cc}
\text { input } & \text { output } \\
\Sigma(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow & \rho_{\text {val }}^{D M T}(\mathbf{r}), E_{\text {valence }}
\end{array}
$$

I) Constructs projector: $\quad P\left(\mathbf{r r}^{\prime}, \tau L L^{\prime}\right) \approx Y_{L}\left(\hat{\mathbf{r}}_{\tau}\right) \delta\left(r_{\tau}-r_{\tau}^{\prime}\right) Y_{L^{\prime}}^{*}\left(\hat{\mathbf{r}}_{\tau}^{\prime}\right)$
2) Embeds self-energy: $\bar{\Sigma}_{\mathbf{k}, i j}(\omega)=\sum_{\tau, L_{1} L_{2}} P_{\mathbf{k} \tau}\left(j i, \tau L_{2} L_{1}\right)\left(\Sigma_{L_{1} L_{2}}^{\tau}(\omega)-E_{d c}^{\tau}\right)$
3) Solves Dyson Eq.: $\left(-\nabla^{2}+V_{K S}(\mathbf{r})+\bar{\Sigma}_{\mathbf{k}}(\omega)\right) \psi_{\mathbf{k} \omega_{n} i}(\mathbf{r})=\varepsilon_{\mathbf{k} \omega_{n} i}^{D M F T} \psi_{\mathbf{k} \omega_{n} i}(\mathbf{r})$
4) Determines chemical potential: $\quad N_{v a l}=T \sum_{\omega_{n}, i} \frac{1}{i \omega_{n}+\mu-\varepsilon_{\mathbf{k} \omega_{n} i}}$
5) Calculates DMFT electronic charge in 3D space:

$$
\rho_{v a l}^{D M F T}=\sum_{\mathbf{k}, i j} \psi_{\mathbf{k} i}^{D F T}(\mathbf{r}) \times T \sum_{\omega_{n}}\left[\left(i \omega_{n}+\mu-\epsilon_{\mathbf{k}}-\bar{\Sigma}_{\mathbf{k}}(\omega)\right)^{-1}\right]_{i j} \times \psi_{\mathbf{k} j}^{D F T}(\mathbf{r})
$$

6) Calculates valence kinetic energy $\quad E_{\text {valence }}=\operatorname{Tr}\left(\left(-\nabla^{2}+V_{K S}\right) \rho_{\text {val }}^{D M F T}\right)$

EXAMPLE I: IsoStructural transition in Ce metal

Perovskite V-system with 2 electrons with a gap $\sim 1.5 \mathrm{eV}$ on \vee atom which localize

optical conductivity

LECTURE BASED ON

Functional view on DFT+DMFT:

Rev. Mod. Phys. 78, 865 (2006)
G. Kotliar, S. Y. Savrasov, KH, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti.

Implementation of DFT+DMFT:
Phys. Rev. B 8I, 195107 (2010), KH, Chuck-Hou Yee, Kyoo Kim.
Impurity solver:
Phys. Rev. B 75, 155113 (2007), KH.
arXiv: I 403.72 I 4: P. Sémon, C.-H.Yee, KH, A.-M. S.Tremblay

Screening of interaction:

Phys. Rev. B 82, 045105 (2010), A. Kutepov, KH, S.Y. Savrasov, G. Kotliar.
Some lecture notes:
http://www.physics.rutgers.edu/~haule/509/
http://www.physics.rutgers.edu/~haule/68|/

THANKYOU!

[^0]: Tuesday, June 17, 14

