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WHY IS THIS SO HARD TO SOLVE?

We know the 
Hamiltonian:
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We know the 
equation:
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So....

Basic laws of Quantum Mechanics were developed in 
early 1900 (Schroedinger Eq. 1925, Dirac Eq. 1928). 

Emergence!
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DIRECT APPROACH TO SCH. EQ.
Perturbation theory does not work:

Kinetic energy: 
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⇡ 0.2 eV
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⇡ e2

"a
⇡ 0.5 eV
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Interaction is non-perturbative.
Direct Numerical approach hopeless:

1023 interacting fermions
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and wave function is fully 
antisymmetric  with 
respect to electron 

coordinates and spins
Sign problem NP hard =>
cost scales:   Exp(-size/T)
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INDIRECT APPROACH / STANDARD THEORY
Density Functional Theory:

Hohengerb & Kohn proved: ∃functional of electron density ρ, 
which is minimized at the physical density, and gives ground 
state energy.

universal functional
independent of material

depends on EM interaction

material dependent term
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Kohn & Sham (1965): To minimize the functional: 
solve auxiliary single-particle problem+self-consistency condition
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self-consistency 
condition:

unknown but 
universal

auxiliary potential:
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LOCAL DENSITY APPROXIMATION
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Universal but unknown functional

approximated by local ansatz:

energy density at point r depends only on 
the charge density at the same point.
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computed in uniform electron gas  
(jellium) model by QMC 
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DIFFERENT INDIRECT APPROACH
LUTTINGER-WARD FUNCTIONAL

For a proof see: Abrikosov, Gorkov, Dzialoszynski book

SOME FORMULAS FOR SLIDES

(1) �[G] = Tr lnG� Tr(⌃G) + �[G]

1
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Feynman diagrams (skeleton diagrams).

Luttinger-Ward Functional:
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material dependent term: universal functional
independent of material

Extremum in the exact Green’s function
Γ is free energy in extremum
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LW- FUNCTIONAL

In practice: 
Impossible to solve 

Functional derivative obtained by 
cutting G propagator in every 
diagram in all possible ways
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2 SOME FORMULAS FOR SLIDES
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DC
[{⇢local}] (26)
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USEFUL  APPROXIMATIONS

1) Hartree-Fock:

Stationarity of          gives:

SOME FORMULAS FOR SLIDES
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+ + +... +...
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KH Computational Physics- 2009 Hartree-Fock Method

Interpretation in terms of electron self-energy
In many-body problems, one usually defines the so-called self-energy. It is the quantity that
needs to be added to non-interacting Hamiltonian to get the interacting effective
Hamiltonian

Heff =

∫

drdr′Ψ†(r)
{

H0(r)δ(r − r
′) + Σ(r, r′)

}

Ψ(r′) (10)

From Eq. (4) we can see that

Σ(r, r′) = δ(r − r
′)

∫

dr′′ρ(r′′, r′′)vc(r
′′ − r) − ρ(r′, r)vc(r

′ − r) (11)

This term is just the lowest order term in perturbation expansion of self-energy in powers of
Coulomb repulsion and its diagrammatic representation in terms of Feyman diagrams is

Kristjan Haule, 2009 –5–

-

Douglas Hartree Vladimir Fock

1

✓
⌃HF =

��HF
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◆
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F 0 †
↵ 

†
� � ↵ + · · · (2)

�
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2

+ · · · (3)

�
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2

+ JH
nloc

2

(

nloc

2

� 1) (4)
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��[nloc]

�nloc
= F 0

(nloc �
1

2

) + JH
nloc

2

(

nloc

2

� 1) (5)
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[⇢,

1

|r� r0| ] ⌘ �

LDA
[�(t� t0)�(r� r0)G(rt, r0t0)] (6)

�[G, ˆVC ] ! �[Glocal, ˆUC ] (7)

�

DC
(⇢local) = EH [⇢local, ˆUC ] +

Z
dr⇢local(r)"xc(⇢local(r), ˆUC) (8)

�

LDA
[⇢,

1

|r� r0| ] =
1

2

Z Z
drdr0

⇢(r)⇢(r0)

|r� r0| +

Z
dr⇢(r)"xc(⇢(r),

1

|r� r0| ) (9)

ˆPi
�1

⌘ ˆEi (10)

�[G] = Tr logG� Tr

�
(G�1

0 �G�1
)G

�
+ �

LDA
(⇢) + �

DMFT
(Gloc)� �

DC
(⇢loc) (11)

⇢(r) = �(r� r0)�(t� t0)G(r t, r0 t0) (12)

Gloc i(r t, r
0 t0) = ˆPiG(r t, r0 t0) (13)

G�1
0 = � @

@⌧
+ µ+r2 � Vext (14)

⌃

DMFT ⌘ ˆP�1 ��
DMFT

[Gloc]

�Gloc
(15)
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USEFUL  APPROXIMATIONS

2) RPA (also called GW in abinitio world):

SOME FORMULAS FOR SLIDES
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1/4 ...+... +...+1/3 +1/6

Stationarity of          gives:

SOME FORMULAS FOR SLIDES
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David Pines
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DF T IN LW-LIKE LANGUAGE
Walter Kohn

is the diagonal part of the GF, i.e.,

DFT approximation:

3

�[{G}] = EHartree[{⇢}] + Exc[{⇢}] + �

DMFT
[{Glocal}]� �

DC
[{⇢local}] (26)

Vxc(r⌧, r
0⌧ 0) = �(r� r0)�(⌧ � ⌧ 0)Vxc(r) (27)

⌃ij(!) = �ij⌃(!) (28)

hn↵n�i � hn↵ihn�i / �↵� (29)

Vk,k0 ! �

pp
↵�;��(i!, i!

0, i⌦) (30)

max(�(T = Tc)) = 1 (31)

�B =

h

2e
n (32)

��[G]

�G
=⌘ ⌃ = 0 (33)

�[{G}] ! EH [⇢] + �xc[⇢] (34)

While DFT gives exact energy at T=0, 
in LW language it appears as an 

approximation
to the exact G and F

where

Consequence for the L.W. like functional:

SOME FORMULAS FOR SLIDES 3
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DFT
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�[⇢] =
1

2

Z Z
drdr0

⇢(r)⇢(r0)

|r� r0| +

Z
dr⇢(r)"xc(⇢(r))(35)

(36) �[⇢] =

Z
drf(⇢(r))

(37) �

DMFT
=

X

i

f [Gii]

(38)

��DFT
[⇢]

�⇢
= Tr⌧

✓
� @

@⌧
+ µ+r2 � Vext � V [⇢]

◆�1 �V

�⇢
� V � ⇢

�V

�⇢
+

��DFT

�⇢
= 0

⇢ = Tr⌧

✓
� @

@⌧
+ µ+r2 � Vext � V [⇢]

◆�1

(39)

V =

��DFT

�⇢
= VHartree + Vxc(40)

(41) Vxc = "xc(⇢) + ⇢
d"xc(⇢)

d⇢

�[G(r, r0] ! �[G(r�R, r0 �R)](42)
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Stationarity:
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DC
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⇢(r) = G(⌧r, ⌧ 0r0)�(⌧ � ⌧ 0)�(r� r0) (36)-- Self-consistency condition

electron density
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(r0⌧ 0)i

Tuesday, June 17, 14



LOCAL/SEMI-LOCAL DENSITY APPR.

Band Theory: electrons as waves: 
Rigid band picture:  En(k) versus k

Real space: Momentum space:
Extraordinary success: Standard theory of the solid state systems
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PROBLEMS IN COMPLEX MAT.
Rigid bands picture:

at each momentum point 
electron weight concentrated

in a single delta function 

Coherent+incoherent
spectra in complex
correlated matter

✦Electrons have dual nature, partly itinerant and partly localized
✦Need to incorporate a real space perspective into wave picture 

(Mot localization -> electrons partly localized, 
Hunds coupling->leads to orbital blocking).
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SUCCESSFUL THEORY: DMFT+DFT

solid Q. impurity
in a medium

Successfully describes 
properties of numerous 

complex materials
(see http://hauleweb.rutgers.edu/)

database: http://hauleweb.rutgers.edu

tutorials: http://hauleweb.rutgers.edu/tutorials
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NEW PHYSICS UNCOVERED BY DFT+DMFT

CsCl-type (B2) phase of FeO was found to be exist above
240 GPa and 4000 K [16].

The first experiment was carried out between 32 and
132 GPa at high temperatures (circle symbols in Fig. 1).
Between 30 and 50 GPa, XRD spectra show the structure
change from rB1 to B1 with increasing temperature. The
resistance of the rB1 phase dramatically decreased with
increasing temperature, as is expected in an insulator. The
resistance of B1 FeO showed a much smaller temperature
dependence [Figs. 2(a) and 2(b)], consistent with being a
bad metal or bad insulator, i.e., intermediate between pro-
totypical metallic and prototypical insulating behavior.
The observed nonmetallic behavior in rB1 and B1 FeO is
in good accordance with that obtained in our previous
study [9]. We next measured the resistance from 58 GPa
and 300 K to 73 GPa and 2270 K after gas compression
[Fig. 2(c)]. The temperature dependence of the B1 resist-
ance changed sign to positive at 70 GPa and 1870 K. The
positive temperature slope is consistent with metallic
behavior; we find that B1 FeO metallizes at that P-T
condition. We further measured the resistance of B1 FeO
at higher pressures up to 132 GPa and 2320 K, indicating
it remained metallic [Fig. 2(d)]. We obtained a temperature
coefficient (!;"ðTÞ ¼ "ðT0Þf1þ !ðT % T0Þg, where ", T
and T0 are electrical resistivity, temperature and
reference temperature, respectively) of metallic B1 FeO
of ð3:2& 0:3Þ ' 10%4 K%1, which did not change

appreciably with pressure [Fig. 2(d)]. In the second and
third sets of experiments, we also observed metallization of
B1 FeO, confirming the first set of experiments (Fig. 1).
The present results demonstrate that the metal-insulator
transition in B1 FeO occurs at around 70 GPa and 1900 K.
The transition boundary has a negative P-T slope, which
was determined from our data in a temperature range
between 1400 and 2000 K (Fig. 1). Throughout all the
experimental runs, no evidence for reaction or decompo-
sition of FeO was observed from obtained XRD spectra.
Knittle et al. [5] first reported the metallization of

Fe0:94O under shock-wave compression. They observed
high electrical conductivity of FeO approximately of
106 S=m comparable to that of pure iron and iron-silicon
alloy above 72 GPa. They observed a decrease in the
conductivity with increasing shock compression, and thus
higher temperatures, which also was evidence for metal-
lization. It was thought that this metallization corresponds
to the transition to the B8 structure [7] but it now appears
that the B8 structure does not appear until higher pressures
at these temperatures, and the metallization we observe
occurs in the B1 structure at high temperatures. Electrical
conductivity of metallic B1 phase measured in this study is
much lower than 106 S=m, although positive temperature
dependence of the B1 resistance obviously indicates the
metallic nature. The discrepancy in the resistivity between
present and previous measurements could be derived from
variant chemical compositions in FeO (Fe0:94O; Knittle
et al. [5], Fe0:96O; this study). Indeed, the electrical con-
ductivity of Fe0:91O is twice as high as that of Fe0:94O at
1 bar and low temperatures [17].
Our theoretical calculations also show metallization, are

consistent with our experimental observations, and reveal
the mechanism of metallization of B1 FeO. In the DFT-
DMFT method [18], the strong correlations on Fe ion are
treated by the DMFT, adding self-energy!ði!Þ to the DFT
Kohn-Sham Hamiltonian. The self-energy !ði!Þ contains
all Feynman diagrams local to the Fe ion. No downfolding
or other approximations were used, and the calculations are
all-electron as implemented in Ref. [19]. The self-
consistency matrix equation is Pði!þ#%HKS %
E!0Þ%1 ¼ ði!% Eimp %!%"Þ%1, where P is the projec-

tion from the crystal with the LAPW representation to the
Fe local orbitals,# is the chemical potential adjusted to get
the right number of electrons, HKS is the Kohn-Sham DFT
Hamiltonian, E is the embedding of the impurity into 2the
crystal (inverse of P), !0 ¼ !% EDC, where EDC is
the double counting correction, and Eimp and "ði!Þ are
the impurity levels and hybridization, respectively. The
impurity solver takes as input Eimp and "ði!Þ and delivers
!ði!Þ as the output. We used the Wu-Cohen GGA ex-
change correlation functional in HKS [20]. Brillouin zone
integrations were done over 1000 k points in the whole
zone in the self-consistent calculations and 8000 k points
for the density of states and conductance computations.

FIG. 1. Phase diagram of FeO. Stabilities of rB1, insulating
B1, and metallic B1 phases are represented by solid, gray solid
and open symbols, respectively. Circles, squares and triangles
indicate each set of experiments (runs1–3). A metal-insulator
transition boundary shown as bold line is determined from
present data, and linearly extrapolated to the melting condition
(broken bold line). The estimated uncertainty in location of the
transition is shown by gray band. The melting curve and the
phase boundaries of FeO shown as broken lines are from
previous studies [1,7,38]. The uncertainty in temperature was
about &10%, and that in pressure was smaller than &5 GPa,
mainly due to the variation in temperature when the equation of
state of gold was applied.
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FIG. 1: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
along the path (0,0)!(1,0)!(1,1)!(0.5,0.5)!(0,0) (in the unit of the one-Fe Brillouin zone) for (a) BaFe2P2 (Tmax

C

< 2K); (b)
LiFeP (T

C

= 6K); (c)LaFePO (T
C

= 7K); (d) SrFe2As2 (Tmax

C

= 37K); (e) LaFeAsO (Tmax

C

= 43K); (f) BaFe2As2 (Tmax

C

=
39K); (g) LiFeAs (T

C

= 18K); (h) FeSe (Tmax

C

= 37K); (i)MgFeGe (Tmax

C

= 0); (j)FeTe (Tmax

C

= 0); (k) BaFe1.7Ni0.3As2
(T

C

< 2K); (l) BaFe1.9Ni0.1As2 (T
C

= 20K); (m) Ba0.6K0.4Fe2As2 (T
C

= 39K); (n) KFe2As2 (T
C

= 3.5K); (o) KFe2Se2. Since
the intensity substantially varies across compounds, the maximum value of intensity was adjusted to emphasize the dispersion
most clearly. The maximum value of the intensity in each compound is shown in the top right corner. The experimental data
shown in (f), (g), (l) and (m) are from Refs. 17–20.

of the fluctuating moment in this energy range, which roughly anti-correlates with strength of correlations, hence
phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
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Fig. 1. Local spectra and susceptibility. The theoretical local spectral func-
tion for different temperatures. ωmin traces the spectral minimum with respect to the Fermi
level (10x magnified). Inset : local spin susceptibility.
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played by the symmetry of the crystal lattice, the symmetry of
the unit cell, and of the magnetic order (Kenzelmann et al.,
2005). For example, a spiral spin state (Sushkov et al., 2008)
induces, through the Dzyaloshinski-Moriya exchange
(Dzyaloshinski, 1958; Moriya, 1960), a polar lattice distor-
tion and accordingly a static electric polarization. In the
ordered spin state, one of the two magnons in the
Hamiltonian is replaced by the static modulation of spin
density. Together, the symmetry breaking caused by the
static electric polarization and the spin-orbit interaction ren-
der magnons electric dipole active (see Sec. III.D).
Consequently, optical phonons and single-magnon waves of
the same representation will mix. Also, two-magnon and
single magnons can be excited by the electric-field compo-
nent of electromagnetic radiation (Katsura et al., 2007). This
is at the heart of the phenomenon of electromagnons, and it
offers interesting perspectives for the coupling of electric and
magnetic polarization in multiferroic materials (Cheong and
Mostovoy, 2007).

Indeed strong ‘‘electromagnon’’ modes are observed in
the infrared transmission spectra of GdMnO3, TbMnO3 (see
Fig. 37), Gd0:7Tb0:3MnO3, and Eu0:75Y0:25MnO3 at !20 and
60 cm"1 (Pimenov, Mukhin et al., 2006; Pimenov, Rudolf
et al., 2006; Sushkov et al., 2007; Aguilar et al., 2007; Kida
et al., 2008; Sushkov et al., 2008; Aguilar et al., 2009;
Pimenov et al., 2009). Recent observation of the coincidence
of two AFMRmodes with electromagnons at 18 and 26 cm"1

illustrates the close relationship of electromagnons to AFMR
(Pimenov et al., 2009). Whereas a single zone-boundary
magnon seems the most plausible interpretation of the
60 cm"1 peak (Aguilar et al., 2009), the interpretation of
the 25 cm"1 peak as either a rotation mode of the spiral spin
plane (Katsura et al., 2007) or a two-magnon process (Kida
et al., 2008) is still the subject of discussion. Talbayev,
LaForge et al. (2008) observed AFMR at 43 cm"1 in multi-
ferroic hexagonal HoMnO3 and demonstrated the ferromag-

netic nature of the rare-earth and Mn exchange. The
magnetoelectric response in a multiferroic material enables
monitoring the oscillation of coherent magnons in the time
domain following femtosecond excitation: The magnetic pre-
cession modulates the material’s dielectric tensor, and this is
seen as a modulation of the intensity of a light beam reflected
at the surface of the sample (Talbayev, Trugman et al., 2008).

F. Iridates

Moon et al. (2008) studied a Ruddlesden-Popper series of
Ir oxides with chemical formula Srnþ1IrnO3nþ1, where n ¼ 1,
2, and 1. The optical conductivity of Sr2IrO4 and Sr3Ir2O7

single crystals, as well as epitaxially thin films of SrIrO3

grown on cubic MgO substrate, is reproduced in Fig. 38. The
role of the substrate was to ensure the perovskite phase of
SrIrO3, which is otherwise stable only at higher pressure and
temperature (Longo et al., 1971). To measure the SrIrO3

optical response, far-infrared ellipsometry was combined
with transmittance and reflectance measurements to obtain
accurate results over an extended energy range.

Figure 38(a) shows that Sr2IrO4 (n ¼ 1) has an optical gap
of !0:1 eV, Sr3Ir2O7 (n ¼ 2) has a much smaller gap, and
SrIrO3 (n ¼ 1) is a metal. Hence there is a metal-insulator
transition in the Ruddlesden-Popper series for n in the range
2< n<1.

The optical conductivity in Figs. 38(a) and 38(b) displays a
pronounced two peak structure in both insulators, with peaks
! and ", which slightly decrease with n. In the metal, only
the higher-energy peak " is identified. Moon et al. (2008)
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FIG. 37 (color online). Frequency dependence of the imaginary
parts of the terahertz-dielectric function in (a) TbMnO3 and
(b) GdMnO3 with e k a and b k c. Open symbols represent experi-
mental data in zero external magnetic field and in the IC-AFMR
phase. Solid lines represent model calculations adding an over-
damped Lorentzian (dashed lines) to the residual high-frequency
contribution. Filled spheres represent the data in the CA-AFMR
state obtained by applying B ¼ 2 T (GdMnO3) and B ¼ 8 T
(TbMnO3) along the c axis. The corresponding zero-field data are
shown by filled triangles. From Pimenov, Mukhin et al., 2006.

FIG. 38 (color online). Optical conductivity of the Ruddlesden-
Popper series Srnþ1IrnO3nþ1, where n ¼ 1, 2, and 1. The insets
sketch the t2g density of states in the three materials. From Moon
et al., 2008.

510 Basov et al.: Electrodynamics of correlated electron materials

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011

2

eters U and J . This is in contrast to other DMFT calcula-
tions on iridates18,19 where downfolding to Ir t2g−orbitals
was performed, so that the proper values of U and J de-
pend sensitively on the screening by the bands eliminated
from the model. The value of U for our large energy win-
dow was estimated for the undistorted 214 with tetrag-
onal structure (P4/mmm) using the method of Ref. 20,
which leads to U ≈ 4.5 eV and J ≈ 0.8 eV. To properly
simulate the non-collinear magnetic state in the 214 com-
pound, we chose different local coordinates on each Ir
atom, with local quantization axis of spin in the direc-
tion of the ordered magnetic moment, and used proper
Wigner rotations of spins and orbitals to transform the
local self-energy to a common global axis. The DOS and
optical conductivities were computed from analytic con-
tinuation of the self-energy from the imaginary frequency
axis to real frequencies using an auxiliary Green’s func-
tion and the maximum-entropy method. The DMFT cal-
culations were performed at 50K, below the AFM tran-
sition temperature of the 214 (240K)2 and 327 (280K)4.
For comparison, we also carried out DFT+U calculations
using the full-potential linearized augmented plane wave
(FLAPW) method as implemented in the Elk code.21

Since DFT+U does not include screening effects, the
fully screened interaction on Ir is needed, which is here
determined to be U ≈ 2.5 eV by fitting to the DMFT
results. VASP was used to relax the structures when epi-
taxial strain is considered, with atomic forces converged
to 10−3 eV/Å in the GGA approximation.22

The resulted DMFT spectral functions are presented
in Fig. 1 for the 214, 327, and 113 compounds, with color
coding showing the spectral intensity along Γ−X−M−Γ,
and the side panels displaying the corresponding orbital-
resolved DOS. The dotted lines show an overlay of the
band structures from the GGA+U calculations. Within
DMFT, the insulating gap in 214 and 327 are approxi-
mately 400 and 300meV, respectively. There is a signif-
icant amount of incoherent spectral weight in the gap,
which shows up in the DOS, but is hardly noticeable
in the spectral-function plot. The unoccupied electronic
states are of mainly Jeff = 1/2 character. The first va-
lence state at X is also of Jeff=1/2 character, while the
first valence state at Γ is of Jeff = 3/2 character, hence
the occupied states are an equal mixture of Jeff = 1/2
and Jeff=3/2 states. In the DMFT calculation, the top-
most valence state at X is about 40meV closer to EF

than the first valence state at the Γ point, in agreement
with recent ARPES measurements,23,24 but in contrast
to GGA+U results, where the first valence state is at
the Γ point. This is because the filled orbitals (here
Jeff = 3/2) tend to be repelled from the Fermi level in
DMFT. In 327, the Jeff = 3/2 tail at Γ is split into two
peaks due to its double-layer structure, consistent with
experimental results.25 Finally, the 113 compound is a
strongly correlated metal,6 with very flat bands around
EF. The effective mass of the t2g states is quite large,
e.g., the effective mass of the hole pocket around Γ is
about nine times that of bare electron.
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FIG. 1: (Color online) Spectral functions and orbital-resolved
densities of states (DOS) obtained by the DMFT method for
the RP series of iridates. Arrows indicate optical transitions
corresponding to the peaks in the optical conductivities shown
in Fig. 2. Dotted lines denote the band structures obtained
by GGA+U calculations. For 214 and 327, the GGA+U band
structures and the DMFT spectral functions are aligned by
fixing the position of the topmost valence state at X. Orbitals
(1/2,±1/2) correspond to ψ±1/2, and

∑
(3/2) stands for the

sum over the remaining t2g states, i.e., Jeff=3/2 states.

A closer look at the orbital-resolved DOS in Fig. 1 re-
veals that the Jeff = 1/2 states are not fully polarized.
This is due to significant itineracy effects and hybridiza-
tion between Ir 5d and O 2p states. The resulting occupa-
tion number for the occupied Jeff=1/2 orbitals is about
0.65 (0.45) in the 214 (327) compound. Consequently,
this leads to substantially reduced magnetic moments
compared to the ideal Jeff = 1/2 value of 1µB, down
to about 0.55µB (214) and 0.58µB (327).

3

While the most part the GGA+U band structures are
in fairly good agreement with the DMFT spectral func-
tions (Fig. 1), there are also some differences. The band
gaps in the 214 and 327 compounds within GGA+U are
of almost equal size, about 270meV (UGGA+U=2.5 eV),
while there is a clear gap reduction of about 100 meV
in the DMFT calculations. This is not surprising, given
that the fully screened U , required by GGA+U, should be
reduced in the more itinerant 327 compounds. For 113,
the Fermi surface in DMFT is quite similar to the GGA
Fermi surface (not shown), but the bandwidth is strongly
renormalized. This is not the case in GGA+U, where the
hole pocket at Γ is missing. Recent ARPES measure-
ments26 confirmed the existence of the hole pocket at Γ
with a strongly enhanced effective mass, in agreement
with the DMFT results.

We mention in passing that the paramagnetic calcu-
lation for 214 is not insulating in DFT+DMFT, but a
very bad metal, in agreement with the DMFT calcula-
tions of Ref. 18, but in disagreement with Ref. 19. The
single-site DMFT calculations describe exactly the cor-
relations local to the Ir sites, and also the correlations
of infinite range with AFM ordering. Based on magnetic
x-ray scattering, Fujiyama et al.3 reported a large but
finite correlation length exceeding 100 lattice spacings
even 20K above the Néel temperature in the 214 com-
pound. The “marginal Mott insulator,”3 a term coined to
describe such a short-range ordered state, is not captured
by the single site DMFT method, but requires cluster ex-
tensions, so unfortunately our modeling cannot account
for the properties of this compound near its AFM phase
transition.

The optical conductivities for the three compounds ob-
tained by the DMFT calculations are shown in Fig. 2. In
agreement with experiments,27 the optical conductivities
of the 214 and 327 insulating compounds have two peaks
denoted by α and β in the low-energy range (0∼1.2 eV).
As proposed in Ref. 28, the α peak is mainly due to
the excitations from the highest valence band to the first
conduction band, both being primarily of Jeff=1/2 char-
acter. The second peak is mainly due to the excitations
from the lower valence bands, of primarily Jeff=3/2 char-
acter, to the conduction band of Jeff=1/2 character. It
is interesting to note that the Jeff = 1/2 and Jeff = 3/2
valence states strongly overlap in energy, as is clear from
the DOS (Fig. 1). Thus, there is no clear separation be-
tween the two types of excitations in local quantities, in
disagreement with the simple cartoon of Ref. 28. Nev-
ertheless, the vertical excitations probed by optics do
give rise to two well separated peaks. Going from 214
to 327, the α peak shifts by about 100meV to lower en-
ergy, while it is replaced by a narrow Drude peak in the
113 compound. The β peak broadens and shifts from
1.0 eV in 214 to 0.5 eV in 113, in good agreement with
experiments.27 We notice that there is an observable tail
of optical conductivity in both insulating compounds at
low energy (spanning the region from 0.25 eV to about
0.4 eV in 214), which can be attributed to the incoherent
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spectral weight in the gap. A similar tail was also found
in optical experiments.27,28

To shed more light on the nature of the Jeff = 1/2
insulating state, we performed calculations for the RP
series of iridates under epitaxial strain, where the out-of-
plane lattice parameter and internal lattice coordinates
were relaxed in the GGA approximation. Fig. 2(b) shows
the optical conductivity for the 214 compound with −2%
(compressive), 0%, and +2% (tensile) strain. Compres-
sive (tensile) strain substantially reduces (increases) the
gap size due to an increase (decrease) of the dominant
in-plane hoppings. The two peaks are shifted to lower
(higher) energy, and become sharper (broadened), while
the overall conductivity increases (decreases) under com-
pressive (tensile) strain. This is in good agreement with
recent optical measurements on strained 214 thin films.29

The evolution of the structural parameters under epi-
taxial strain is shown in Fig. 3. Both the c/a ratio, panels
(c) and (f), and the rotation angle θ of the IrO6 octa-
hedra, panels (b) and (e), decrease nearly linearly with
increasing in-plane lattice constants, making the crys-
tal structure less distorted. These structural parameters
are in good agreement with recent experiments on thin
films.29

For the ideal Jeff = 1/2 state, which is SU(2) invari-
ant, the orbital magnetic moment on the Ir is twice as
large as the spin moment, with values of 2/3 and 1/3
µB, respectively. Fig. 3(a) and (d) show the µL/µS ra-
tio as obtained by the DMFT and GGA+U methods for
the 214 and 327 compounds. In 214, this ratio increases
with tensile strain, while it decreases in 327. In the ab-
sence of strain, µL/µS ≈ 2.2 for 214 and µL/µS ≈ 1.3,
which demonstrates that the 214 compound has only a
slightly larger orbital moment than expected for the ideal
SU(2) situation, while 327 has a substantially smaller
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Exact in infinite dimension: W. Metzner and D. Vollhardt, PRL 62, 324 (1989)

For finite dimensions: Approximation

Two main ingredients: A. Georges et al., RMP 68, 13 (1998)

1) Anderson impurity problem

2) Self-consistency condition

local correlations on a given site can be 
computed by solving a quantum 

impurity model 
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STATIC MEAN FIELD 
Weiss mean field theory for spin systems
Exact in the limit of large connectivity z

Classical problem of spin in
a magnetic field

Simplification:
Local problem!
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DMFT SELF CONSIST. C.

2 SOME FORMULAS FOR SLIDES
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SCC for the Hubbard-like model:
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⇧

0
q

⇧

low
q

Glow

⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
(r0⌧ 0)i

�

LDA
xc =

Z

r
�xc[⇢(r)]

Uii
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DYNAMICAL MEAN FIELD

DMFT approx:

1/2 +1/2 +1/4 +... +...i i
i

i

i

i

i

i

i

i

i
i i

i
ii

i i

SOME FORMULAS FOR SLIDES

(1) �[G] = Tr lnG� Tr(⌃G) + �[G]

(2)
��[G]

�G
= 0

(3)
��[G]

�G
=

1

G
� ⌃�G

�⌃

�G
+
��

�G
= 0

(4) ⌃ =
��

�G

(5) G�1 = G�1
0 � ⌃

(6) G�2 = � �⌃
�G

⌃GW = ⌃HF +(7)

�GW = �HF [G]+(8)

(9) Z =

Z
D[ † ]e�

P
i

S
atom

(i)�
P

ij

R
d⌧ †

i

(⌧)H
ij

 
j

(⌧)

(10) Z =

Z
D[ † ]e�

P
i

S
atom

(i)�
P

i

R
d⌧

R
d⌧ 0 †

i

(⌧)�(⌧�⌧ 0) 
i

(⌧ 0)

(11) �[Gij ] ! �[Gii]

(12) �exact[G] = �Tr ln(G�1
0 � ⌃)� Tr(⌃G) + �[G]

(13) �DMFT [G] = �Tr ln(G�1
0 � ⌃)� Tr(⌃G) +

X

i

�[Gii]

1

=

: all local diagrams
(fully dressed propagators)

DMFT funcional:

1

⌃ = G�1
0 �G�1

�exact[G] = TrlogG� Tr

�
(G�1

0 �G�1
)G

�
+ �[G] (1)

�DMFT [G] = TrlogG�Tr

�
(G�1

0 �G�1
)G

�
+

X

i

�[Gii]

(2)

Z =

Z
D[ † ]e�

P
i

S
atom

(i)�⌃
i 6=j

R
d⌧ †

i

(⌧)H
ij

 
j

(⌧)
(3)

�[G] = TrlogG� Tr

�
(G�1

0 �G�1
)G

�
+ �[G] (4)

��[G]

�G
= G�1 �G�1

0 +

��[G]

�G
(5)

��[G]

�G
= ⌃ (6)

⇢
a b
c d

�
(7)

��[G]

�G
= 0 (8)

�(!) / !�↵

A(k,!) :

�(!) :

JK ! J0/(2l + 1)

2

J1 ~S
X

a,��0

c†a�~�ss0ca�0
(9)

J2 ~⇤
X

ab,�

c†a�~�abca� (10)

J3
⇣
~
⇤⌦ ~S

⌘ X

ab,��0

c†a�

⇣
~�ab ⌦ ~�ss0

⌘
cb�0

(11)

dxy,ŝ (12)

J1 ! J0/(2l + 1)

2
(13)

J1 ! �J0/(2l + 1)

2
(14)

J2 ! J0/(2l + 1) (15)

J3 ! J0/(2l + 1) (16)

�(!) ⇡
i!2

p

4⇡

1

! + ⌃(!)� ⌃(0)

(17)

Luttinger-Ward Functional:

2

+VXC [{⇢(r)}] n(r) (12)

VXC [{⇢(r)}] =
�EXC [{⇢(r)}

�⇢(r)
(13)

Eint[{⇢(r)}] = EHartree[{⇢(r)}] + EXC [{⇢(r)}] (14)

EXC [{⇢(r)}] ⇡
Z

dr⇢(r)"xc(⇢(r)) (15)

G(r⌧, r0⌧ 0) = hT⌧ 
†
(r0⌧ 0) (r, ⌧)i (16)

⇢(r) = G(r⌧, r⌧) (17)

"xc(n) (18)

⌦phonon

Eelectron
⌧ 1

⌃(k,!) = (19)

q k� q
k, " �k, #
Vk,k0

G�1
0 (r, r0) = [! + µ+r2 � Vext(r)]�(r� r0) (20)

�[{G}] = �Tr((G�1
0 �G�1

)G) + Tr log(�G) + �[{G}] (21)

��[{G}]
�G

= 0 (22)

�[{G}] ⇡ EHartree[{⇢}] + Exc[{⇢}] (23)

�[{G}] ⇡ Exc[{⇢}] (24)

�[{Gij}] ⇡ �[{Gii}] (25)

Gabriel Kotliar Antoine Georges

known 
functional

Sum of all local 
Feynman 
diagrams

i is site or cluster

7

ˆVC ! ˆUC

h ˆUCi =
1

2

X

↵�

F 0h †
↵ 

†
� � ↵i+ · · · = F 0Natom(Natom � 1)

2

+ · · · (80)

n↵n↵ = n↵ (81)

h ˆUCi = F 0Natom(Natom � 1)

2

� JH
Natom

2

(

Natom

2

� 1)

Vdc[Natom] =

�h ˆUCi
�Natom

= F 0
(Natom � 1

2

)� JH
2

(Natom � 1) (82)

�

DC
(nlocal, ˆUC) = Vdc[Natom]nlocal (83)

�

DC
(nlocal, ˆUC) = F 0nlocal(nlocal � 1)

2

� JH
nlocal

2

(

nlocal

2

� 1) (84)

�[G] = �

LDA
[⇢] +

X

i2corr

�

DMFT
[Gi

local]� �

DC
[⇢ilocal] (85)

��[{Gii]}
�Gii

= (86)

=

��[{Gimp]}
�Gimp

(87)

(88)

Gii = Gimp (89)

�[{Gij}] !
X

i

�[{Gii}] (90)

�DMFT [{G}] = �Tr((G�1
0 �G�1

)G) + Tr log(�G) +

X

i

�[{Gii}] (91)

11

⇧

0
q

⇧

low
q

Glow

⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
(r0⌧ 0)i

�

LDA
xc =

Z

r
�xc[⇢(r)]similarity with DFT:
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DYNAMICAL MEAN FIELD

To sum this infinite set of diagrams, we 
turn to the

 quantum impurity problem!

2 SOME FORMULAS FOR SLIDES
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Exact action for the impurity problem:

2 SOME FORMULAS FOR SLIDES

(15) ⌃ = �ij
��[Gii]

�Gii

(16) ⌃ii =

(17) �DMFT [G] = �Tr ln(G�1
0 � ⌃ii)� Tr(⌃iiGii) +

X

i

�[Gii]

(18) ⌃ii[Gii, Uiiii]

(19) vc(r� r0) =
1

|r� r0| or Uijlk

(20) �imp[Gimp] = �Tr ln(

@

@⌧
� Eimp ��� ⌃imp)� Tr(⌃impGimp) + �[Gimp]

(21)

��imp

�G
= (

@

@⌧
� Eimp ��� ⌃imp)

�1 �⌃imp

�Gimp
� ⌃imp �Gimp

�⌃imp

�Gimp
+

��[Gimp]

�Gimp

(22) ⌃imp =
��[Gimp]

�Gimp

(23) �[Gii] = �[Gimp]with all skeleteon diagrams constructed by 

1

⌃ = G�1
0 �G�1

�imp[Gimp] = Tr logGimp�Tr

�
(G�1

0 imp �G�1
imp)Gimp

�
+�[Gimp]

(1)

�exact[G] = TrlogG� Tr

�
(G�1

0 �G�1
)G

�
+ �[G] (2)

�[G,⌃] = �Trlog

�
G�1

0 � ⌃

�
� Tr (⌃G) + �[G] (3)

✓
��[G,⌃]

�G

◆

⌃

= �⌃+

��[G]

�G
= 0 (4)

✓
��[G,⌃]

�⌃

◆

G

= (G�1
0 � ⌃)

�1 �G = 0 (5)

�DMFT [G] = TrlogG�Tr

�
(G�1

0 �G�1
)G

�
+

X

i

�[Gii]

(6)

�DMFT [G,⌃ii] = �Tr

�
G�1

0 � ⌃ii

�
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= ⌃ (12)

⇢
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⇣
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DMFT functional
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DC
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DMFT SADDLE POINT

For this to work, we must require:
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��[G]

�G
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(3)
��[G]

�G
=

1

G
� ⌃�G

�⌃

�G
+
��

�G
= 0

(4) ⌃ =
��

�G

(5) G�1 = G�1
0 � ⌃

(6) G�2 = � �⌃
�G

⌃GW = ⌃HF +(7)

�GW = �HF [G]+(8)

(9) Z =

Z
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P
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S
atom
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ij
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(⌧)

(10) Z =
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=
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(18) ⌃ii[Gii, Uiiii]

(19) vc(r� r0) =
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The trick to sum the local Feynman diagrams:
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⌃

lattice
ii = ⌃imp (93)which is equivalent to:

And from saddle point, we get:

The DMFT functional is:
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G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
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HOW LOCAL ARE CORRELATIONS?
Correlations are only local in large d (large connectivity 
z) hence DMFT exact -- Weiss mean field theory

What about finite D? What about 0?

H2 molecule:
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LOCAL CORRELATIONS

SOME FORMULAS FOR SLIDES 3

(31) �[G] ! �[⇢]

(32) �

DFT
[⇢] = �Tr ln(

@

@⌧
+ µ+r2 � Vext � V [⇢])� Tr(V ⇢) + �

DFT
[⇢]

G�1
0 =

@

@⌧
+ µ+r2 � Vext(33)

⌃[G] ! V [⇢](34)

�[⇢] =
1

2

Z Z
drdr0

⇢(r)⇢(r0)

|r� r0| +

Z
dr⇢(r)"xc(⇢(r))(35)

(36) �[⇢] =

Z
drf(⇢(r))

(37) �

DMFT
=

X

i

f [Gii]

(38)

��DFT
[⇢]

�⇢
= Tr⌧

✓
@

@⌧
+ µ+r2 � Vext � V [⇢]

◆�1 �V

�⇢
� V � ⇢

�V

�⇢
+

��DFT

�⇢
= 0

⇢ = Tr⌧

✓
@

@⌧
+ µ+r2 � Vext � V [⇢]

◆�1

(39)

V =

��DFT

�⇢
= VHartree + Vxc(40)

(41) Vxc = "xc(⇢) + ⇢
d"xc(⇢)

d⇢

�[G(r, r0] ! �[G(r�R, r0 �R)](42) vector centered on an atom
vector to the center of atom i

3

�[{G }] = E Hartree[{ ⇢ }] + E x c [{⇢ }] + �

D M F T
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D C
[{⇢ l o c al }] (26)

V x c (r ⌧ , r0 ⌧ 0
) = � (r� r0) � ( ⌧ � ⌧ 0
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⌃ i j ( ! ) = � i j ⌃( ! ) (28)
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p p
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m a x ( � ( T = T c )) = 1 (31)

� B =

h

2 e
n (32)
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TEST THE IDEA: H2 MOLECULE
Archetypal problem of strong  correlations: 

H2+

Can be solved exactly
provides good local basis
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Archetypal problem of strong  correlations:

DMFT exact in ∞ D, or large connectivity Z

It is not expected to be good for H2 molecule 

DMFT+  for H2 molecule

Error of total energy using LDA+DMFT <0.2%!

LDA+DMFT

HF+DMFT

exact

4

FIG. 2. (Color online) (a) Correlation energy of LDA and
LDA+DMFT versus internuclear separation in H2 molecule.
The DMFT correlation is evaluated by �LDA+DMFT,C =
�LDA,C +

P
i E

LDA+DMFT,i
potential �

P
i �

DC [⇢ilocal], where poten-

tial energy ELDA+DMFT
potential = 1

2Tr(⌃Gloc). (b) LDA+DMFT
double-counting potential VDC , defined as the functional
derivative of �LDA,C [⇢ilocal] + �H [⇢ilocal] + �X [⇢ilocal], where
�LDA,C [⇢ilocal] is defined in Eq. 3.

tial is small when the two ions are close, and it increase
sharply with increasing distance, signaling a Mott-like
transition, where the self-energy correction to the H+

2
Hamiltonian develops a non-analytic pole between high-
est occupied molecular orbital (HOMO) and lowest un-
occupied molecular orbital (LUMO).

In the lower panel of Fig. 2, we show the double-
counting potential within LDA+DMFT, which is de-
fined by VDC = h�i| ��DC/�⇢ilocal |�ii. The often used
phenomenological form first introduce in the context of
LDA+U [15] is also shown for comparison. The ex-
act double-counting is somewhat smaller than the pro-
posed phenomenological form, and its variation is al-
most entirely due to variation of local Coulomb repul-
sion U = h�i�i|UC(r � r0) |�i�ii, with proportionality
constant VDC ⇡ 0.412U . In the solid state calculations,
the self-consistent form of the double-counting U(n�1/2)
is also often found too large and is many times reduced
(see discussion in Ref. 16.)

The ionization energy (IE) is usually substantially un-
derestimated by LDA, and the electron a�nity (EA) re-
quires precise description of highly excited states, which
are not well described by static mean field theories,
such as Hartree-Fock or LDA. The DMFT spectral func-
tions contains information about the single-particle ex-
citations, and hence we expect a sharp peaks at HOMO
energy, and a resonance at the energy of H�

2 molecule. In
Fig. 3 we show the plot of the DMFT spectral function
at equilibrium distance, analytically continued to the real

axis by Pade approximation. With the vertical line we
mark the exact IE and EA, as well as LDA+DMFT IE,
which is obtained as the di↵erence between the total en-
ergy of H+

2 and H2 molecules. Because the total energy
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FIG. 3. (Color online) LDA+DMFT spectral function com-
pared with the LDA+DMFT ionization energy, and exact
IE and EA, reproduced from Ref. 18 and Ref. 33, respec-
tively. The very small di↵erence between the exact IE and
the LDA+DMFT IE is magnified in the inset.

of LDA+DMFT is very precise, consequently IE is also
precise within 0.2%. IE energy of LDA HOMO is o↵ for
almost 40%, which is due to delocalization error of LDA
functional, connected with the well known underestima-
tion of band-gaps by LDA [34, 35]. The LDA+DMFT
spectral function A(!) shows a sharp resonance around
�15.2 eV, which is 7% o↵ the exact value, a substantial
improvement over LDA. The resonance corresponding to
an extra electron on the hydrogen, is around 2.9 eV which
is within 5% of the exact EA value of 3.05 eV.
In summary, a good implementation of LDA+DMFT

with high-quality projector and exact double-counting in-
troduced here, can rival many quantum chemistry meth-
ods in its precision. Since the most time consuming
part of the method – the inclusion of correlations on a
given ion – scales linearly with the system size, it holds
great promise in future quantum chemistry and solid
state applications, but more molecule should be tested
to establish its ultimate usefulness in quantum chem-
istry applications. We showed that the H2 molecule is a
very good testing ground for electronic structure methods
addressing correlation problem, especially because the
screening e↵ects are not obscuring problems connected
with the choice of the functional to be minimized. The
present methodology will be very useful in developing
other electronic structure methods, such as GW+DMFT,
where the precise form of the functional, the level of self-
consistency, screening, and double-counting still need to
be adequately addressed.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
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est occupied molecular orbital (HOMO) and lowest un-
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fined by VDC = h�i| ��DC/�⇢ilocal |�ii. The often used
phenomenological form first introduce in the context of
LDA+U [15] is also shown for comparison. The ex-
act double-counting is somewhat smaller than the pro-
posed phenomenological form, and its variation is al-
most entirely due to variation of local Coulomb repul-
sion U = h�i�i|UC(r � r0) |�i�ii, with proportionality
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quires precise description of highly excited states, which
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citations, and hence we expect a sharp peaks at HOMO
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of LDA+DMFT is very precise, consequently IE is also
precise within 0.2%. IE energy of LDA HOMO is o↵ for
almost 40%, which is due to delocalization error of LDA
functional, connected with the well known underestima-
tion of band-gaps by LDA [34, 35]. The LDA+DMFT
spectral function A(!) shows a sharp resonance around
�15.2 eV, which is 7% o↵ the exact value, a substantial
improvement over LDA. The resonance corresponding to
an extra electron on the hydrogen, is around 2.9 eV which
is within 5% of the exact EA value of 3.05 eV.
In summary, a good implementation of LDA+DMFT

with high-quality projector and exact double-counting in-
troduced here, can rival many quantum chemistry meth-
ods in its precision. Since the most time consuming
part of the method – the inclusion of correlations on a
given ion – scales linearly with the system size, it holds
great promise in future quantum chemistry and solid
state applications, but more molecule should be tested
to establish its ultimate usefulness in quantum chem-
istry applications. We showed that the H2 molecule is a
very good testing ground for electronic structure methods
addressing correlation problem, especially because the
screening e↵ects are not obscuring problems connected
with the choice of the functional to be minimized. The
present methodology will be very useful in developing
other electronic structure methods, such as GW+DMFT,
where the precise form of the functional, the level of self-
consistency, screening, and double-counting still need to
be adequately addressed.
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SPECTRAL DENSITY FUNCT. T.
In solids, we need further approximations.

Too many functions needed for accurate description of GF.

Horrendous impurity problem!
Itinerant states ( sp ) are very 

economically described by LDA.

Narrow states ( df ) are much 
better described by DMFT

3

�[{G}] = EHartree[{⇢}] + Exc[{⇢}] + �

DMFT
[{Glocal}]� �

DC
[{⇢local}] (26)

Vxc(r⌧, r
0⌧ 0) = �(r� r0)�(⌧ � ⌧ 0)Vxc(r) (27)
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Vk,k0 ! �

pp
↵�;��(i!, i!

0, i⌦) (30)
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=⌘ ⌃ = 0 (33)

�[{G}] ! EH [⇢] + �xc[⇢] (34)

G�1 �G�1
0 = (VH [⇢] + Vxc[⇢])�(⌧ � ⌧ 0)�(r� r0) (35)

⇢(r) = G(⌧r, ⌧ 0r0)�(⌧ � ⌧ 0)�(r� r0) (36)
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DMFT
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local]� EH [⇢ilocal]� Ex[⇢
i
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LDA
C [⇢ilocal]) (40)
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SCREENING IN SOLIDS
Since we remove

some itinerant states
from the DMFT, 

they screen DMFT Coulomb 
interaction

effective U smaller than 1/|r-r’|

Effective U depends on the type of 
model (which states are included/

excluded in DMFT.) 
Tuesday, June 17, 14



DFT+DMFT

Very happy marriage:

LDA functional
(depends only on the total density locally in 3D-space, 

functional known only approximately) 

Sum of all skeleton diagrams
for “most” correlated states

(d or f)
DMFT approximation for 

the LDA functional

6

 ik (71)

�↵ (72)

P (↵�, rr0) =
X
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W ⇤
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0
) (73)
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DMFT
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�[G] ! �

LDA
[⇢] +

X

i2corr. atoms

(�

DMFT
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local]� �

DC
[⇢ilocal]) (75)
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DFT+DMFT
DMFT is very expensive!
Can treat:
• 5 orbitals (for transition metal ions) 
•7  orbitals (for lanthanides&actinides)

Important virtues of DMFT: 

Scales linearly with 
the system size

•Local theory (to correlated ion) 

For large unit cell (50atoms+), 
DFT can be slower than DMFT!

•Can hybridize with arbitrary 
number of itinerant states
(can integrate out itinerant states)

No need to 
approximate DFT 
bands structure
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TWO ROUTES
How to marry DFT and DMFT?

GDMFT
i↵,i� ,⌃DMFT

i↵,i�
⇢(r),�r2

+ Vext(r) + Vxc(r)(64) +
Downfolding

to small window 
Wannier functions

approximates kinetic energy
by a few hopping matrix elements

Not very localized corr. states

Projection & 
Embedding

embedding self-energy to
the large Hilbert space 

very localized corr. states

SOME FORMULAS FOR SLIDES 5
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ˆP G(r, r0)

(65)

SOME FORMULAS FOR SLIDES 5
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Gi↵,i� =

X

k

(i! + µ+ tk � ⌃)

�1
↵,�(66)

Conceptually simple (model hamiltonian) but
local approximation in this Wannier basis questionable!

Kinetic energy treated exactly,
local approximation very good

computationally not more expensive
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Downfolding
via Wannier functions:

Projection & 
Embedding
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k i! + µ�Hrr

k

◆�1

(67)

      can have arbitrary large dimension 
but it can be exactly integrated out

 in impurity model

The number of correlated states has to be small
while the part treated by DFT can be arbitrary large 

TWO ROUTES

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃
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�1

GDMFT
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ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+
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k � ⌃)

�1
(66)

✓
Gcc, Gcr
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◆
=

X

k

✓
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k i! + µ�Hrr
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(67)

(68) GccOnly        is needed in DMFT
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GDMFT
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(68) Gcc
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Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I
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(r, r0)(69)
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(68) Gcc
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X

↵�
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ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

SOME FORMULAS FOR SLIDES 5
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⌃
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k
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E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

G(r, r0) = (�(r� r0)(i! + µ+r2 � Vext(r)� Vxc(r))� ⌃

DMFT
(r, r0))�1

�
ˆU

also needs 
local
(later)
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X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)
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Grc, Grr
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=

X

k
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k i! + µ�Hrr
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◆�1
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GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

SOME FORMULAS FOR SLIDES 5
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⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr
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◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

Impurity solver

4 SOME FORMULAS FOR SLIDES

�[G] = �

LDA
[⇢] +

X

i2corr
�

DMFT
[Gi↵,i� ]� �

DC
[G](46)

�[G] = �Tr(� @

@⌧
+ µ+r2 � Vext � ⌃)� Tr(⌃G) + �

DFT
[⇢] + �

DMFT
[GDMFT ]� �

DC
[⇢]

��

�G
= (� @

@⌧
+ µ+r2 � Vext � ⌃)

�1 �⌃

�G
� ⌃�G

�⌃

�G
+

��DFT

�⇢
+

��DMFT

�GDMFT
� ��DC

�⇢
= 0

⌃ = VH [⇢] + V DTF
xc [⇢] + ⌃DMFT � ⌃DC

G = (i! + µ+r2 � Vext � ⌃)

�1
(47)

⌃DMFT =

��DMFT
[GDMFT ]

�GDMFT ]
(48)

(49) �

DC
= U

Nc(Nc � 1)

2

� J

2

Nc(
Nc

2

� 1)

(50) ⌃DC =

��DC

�⇢

(51) ⌃DC =

��DC

�Nc
= U(Nc �

1

2

)� J

2

(Nc � 1)

for p electrons

F 0
= U(52)

F 2
= 5J(53)

for d electrons

F 0
= U(54)

F 2
= 14./1.625 J(55)

F 4
= 14.0.625/1.625J(56)

for f electrons

F 0
= U(57)

F 2
= 6435./(286 + 195 ⇤ 0.668 + 250 ⇤ 0.494) ⇤ J(58)

F 4
= 0.668 ⇤ 6435./539.76 ⇤ J(59)

F 6
= 0.494 ⇤ 6435./539.76 ⇤ J(60)

SOME FORMULAS FOR SLIDES 5
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i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)
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k � ⌃)
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✓
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k
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(r, r0)(69)

Projection
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X
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k
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(70)

ˆU

Embedding

Dyson Eq.

Projection:

Embedding:

Dyson Eq.:

PROJECT/EMBED
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DFT+DMFT

Saddle point Eq.:

DFT+DMFT functional:

1

�[G] = Tr logG� Tr

�
(G�1

0 �G�1
)G

�
+ �

LDA
(⇢) + �

DMFT
(Gloc)� �

DC
(⇢loc) (1)

⇢(r) = G(r⌧, r0⌧ 0)�(r� r0)�(⌧ � ⌧ 0) (2)

Gloc i(r t, r
0 t0) = ˆPiG(r t, r0 t0) (3)

Vint =
��DFT

(⇢)

�⇢
= VHartree + Vxc (4)

Vhartree(r) =

Z
dr0

⇢(r0)

|r� r0| (5)

⌃ = G�1
0 �G�1

�[G] = Tr logG� Tr

�
(G�1

0 �G�1
)G

�
+ �

DFT
[⇢] (6)

⇢ = T
X

i!

G(i!, r, r0)�(r� r0) = Tr⌧ (G) (7)

G�1 �G�1
0 � ��DFT

�⇢
�(⌧ � ⌧ 0)�(r� r0) = 0 (8)

Vxc(r) = "xc(⇢(r)) + ⇢(r)
d"xc(r)

d⇢(r)
(9)

�[G(r, r0)] ! �[G(R� r,R� r0)] (10)

�DMFT [G,⌃] = �Tr

�
G�1

0 solid � ⌃imp

�
�Tr (⌃impG)+

X

i

�

imp
i [Gimp]

(11)

�imp[G,⌃] = �Tr

�
G�1

0 imp � ⌃imp

�
�Tr (⌃impGimp)+�

imp
i [Gimp]

(12)

Vint ⌘
��DFT

[⇢]

�⇢
= VH + Vxc (13)

G�1 �G�1
0 ⌘ Vint =

��DFT
[⇢]

�⇢
= VH + Vxc (14)

�

DFT
[⇢, Vint] = �Tr log(� @

@⌧
+µ+r2�Vext�Vint)�Tr (Vint⇢)+�

DFT
[⇢]

(15)

⇢ = Tr⌧ (�
@

@⌧
+ µ+r2 � Vext � Vint) (16)

�imp[Gimp] = Tr logGimp�Tr

�
(G�1

0 imp �G�1
imp)Gimp

�
+�[Gimp]

(17)

�exact[G] = TrlogG� Tr

�
(G�1

0 �G�1
)G

�
+ �[G] (18)

�[G,⌃] = �Trlog

�
G�1

0 � ⌃

�
� Tr (⌃G) + �[G] (19)

✓
��[G,⌃]

�G

◆

⌃

= �⌃+

��[G]

�G
= 0 (20)

✓
��[G,⌃]

�⌃

◆

G

= (G�1
0 � ⌃)
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�DMFT [G] = TrlogG�Tr
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0 �G�1
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�
G�1
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�
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X

i

�[Gii]

(23)

static and equal space component

local to the atom and orbital  “i”  but dynamic
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+ �
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SADDLE POINT EQ.: DFT+DMFT
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Functional can be cast into stationary functional of 2x2 variables:
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PROJECT/EMBED: WHAT IS

Saddle point Eq. give connection between P & E:

Hence the Embedding is:

We need to define Projection operator only!
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Definition of Embedding is:

Tuesday, June 17, 14



PROJECT/EMBED
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��� � �

[{�}]
��

+

ˆP�1 ��
� � � �

[{G���}]
�G���

+ �(r� r0)�(t� t0)P�1 ��
� �

[{����}]
�����

⌃(r, r0) =
X

↵�

⌃↵� P (�� , r0r0) (52)

⌃↵� =

Z Z
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EH [⇢] =
1

2

Z
⇢(r)⇢(r0)

|r� r0| (41)

EX [⇢] = �1

2

Z
⇢(rr0)⇢(r0r)

|r� r0| (42)

EH [⇢ilocal] =
1

2

Z
⇢ilocal(r)⇢

i
local(r

0
)

|r� r0| (43)

EX [⇢ilocal] = �1

2

Z
⇢ilocal(r, r

0
)⇢ilocal(r

0r)

|r� r0| (44)

(45)

�

LDA
C [⇢] =

Z

r
"c(⇢(r))⇢(r) (46)

�

LDA
C [⇢ilocal] =

Z

r
"c(⇢

i
local(r))⇢

i
local(r) (47)

GL
local ⌘ �⇤

L(r) h�L|G |�Li�L(r
0
) (48)

GR
local ⌘ �⇤

R(r) h�R|G |�Ri�R(r
0
) (49)

�[G] ! �

LDA
[⇢] +

X

i2corr

(�

DMFT
[

ˆPiG]� �

DC
[

ˆPi⇢]) (50)

�[{G}] = �Tr((G�1
0 �G�1

)G) + Tr logG+ �

LDA
[{⇢}] + �

DMFT
[{Gloc}]� �

DC
[{⇢loc}] (51)

��[{G}]
�G

= �G�1
0 +G�1

+ �(r� r0)�(t� t0)
��LDA

[{⇢}]
�⇢

+

ˆP�1 ��
DMFT

[{Gloc}]
�Gloc

+ �(r� r0)�(t� t0)P�1 ��
DC

[{⇢loc}]
�⇢loc

⌃(r, r0) =
X

↵�

⌃↵� P (�↵, r0r) (52)

⌃↵� =

Z Z
P (↵�, r0r)⌃(r, r0)drdr0 (53)

ˆP ⇤ ˆE = I

Glocal↵� =

Z Z
P (↵�, r0r)G(r, r0)drdr0 (54)

Glocal(r, r
0
) =

X

↵�

Glocal↵� P (�↵, r0r) (55)

�

� � ���� �
�

Z ��r���r0�
|r� r0| ����

� � ���� ��
�

Z ��rr0���r0r�
|r� r0| ����

� � ����������
�
�

Z ��������r���������r0�
|r� r0| ����

� � ���������� ��
�

Z ��������r�r0���������r0r�
|r� r0| ����

����

� � � �
� ����

Z

r
�����r����r� ����

� � � �
� ����������

Z

r
�����������r����������r� ����

� �
����� ⌘ � ⇤

� �r�h� � | � |� � i � � �r0� ����
� �

����� ⌘ � ⇤
� �r�h� � | � |� � i � � �r0� ����

� �� �! � � � � ����
X

�2����
�� � � � � ��� �� �� � � � ��� ���� ����

� �{� }�� ������ �1
0 � � �1�� �� ����� � � � � � � �{�}�� � � � � � �{� ���}�� � � � �{����}� ����

�� �{� }�
�� � �� �1

0 � � �1 � ��r� r0����� �0��� � � � �{�}�
�� � �� �1 �� � � � � �{� ���}�

�� ���
� ��r� r0����� �0�� �1 �� � � �{����}�

�����

� �r�r0� �
X

� �

� � � � ����r0r� ����

� � � �
Z Z

� ����r0r�� �r�r0��r�r0 ����

�� ⇤ �� � �

� ����� � � �
Z Z

� ����r0r�� �r�r0��r�r0 ����

� ������r�r0� �
X

� �

� ����� � � � ����r0r� ����

first project

�

� � ����
�

�

Z
��r���r0�

|r� r0| ����

� � ���� ��

�

Z
��rr0���r0r�

|r� r0| ����

� � ����������
�

�

Z
��������r��

�
������r

0�

|r� r0| ����

� � ���������� ��

�

Z
��������r�r

0���������r
0r�

|r� r0| ����

����

� � � �
� ����

Z

r
�����r����r� ����

� � � �
� ����������

Z

r
����

�
������r���

�
������r� ����

� �
����� ⌘ � ⇤

� �r�h� � | � |� � i � � �r
0� ����

� R
����� ⌘ � ⇤

R�r�h�R| � |�Ri �R�r
0� ����

� �� �! � � � � ����
X

�2��rr

�� � � � � ��� �� �� � � � ��� ���� ����

��{� }�� ��r��� �1
0 � � �1�� �� �r��� � � � � � � �{�}�� � � � � � �{� ���}�� � � � �{����}� ����

���{� }�
��

� �� �1
0 � � �1 � ��r� r0����� �0�

�� � � � �{�}�
��

� �� �1 ��
� � � � �{� ���}�

�� ���
� ��r� r0����� �0�� �1 ��

� � �{����}�
�����

� �r�r0� �
X

↵�

� ↵� � ����r0r� ����

� ↵� �

Z Z
� ����r0r�� �r�r0��r�r0 ����

�� ⇤ �� � �

� �����↵� �

Z Z
� ����r0r�� �r�r0��r�r0 ����

� ������r�r
0� �

X

↵�

� �����↵� � ����r0r� ����then embed

4

EH [⇢] =
1

2

Z
⇢(r)⇢(r0)

|r� r0| (41)

EX [⇢] = �1

2

Z
⇢(rr0)⇢(r0r)

|r� r0| (42)

EH [⇢ilocal] =
1

2

Z
⇢ilocal(r)⇢

i
local(r

0
)

|r� r0| (43)

EX [⇢ilocal] = �1

2

Z
⇢ilocal(r, r

0
)⇢ilocal(r

0r)

|r� r0| (44)

(45)

�

LDA
C [⇢] =

Z

r
"c(⇢(r))⇢(r) (46)

�

LDA
C [⇢ilocal] =

Z

r
"c(⇢

i
local(r))⇢

i
local(r) (47)

GL
local ⌘ �⇤

L(r) h�L|G |�Li�L(r
0
) (48)

GR
local ⌘ �⇤

R(r) h�R|G |�Ri�R(r
0
) (49)

�[G] ! �

LDA
[⇢] +

X

i2corr

(�

DMFT
[

ˆPiG]� �

DC
[

ˆPi⇢]) (50)

�[{G}] = �Tr((G�1
0 �G�1

)G) + Tr logG+ �

LDA
[{⇢}] + �

DMFT
[{Gloc}]� �

DC
[{⇢loc}] (51)

��[{G}]
�G

= �G�1
0 +G�1

+ �(r� r0)�(t� t0)
��LDA

[{⇢}]
�⇢

+

ˆP�1 ��
DMFT

[{Gloc}]
�Gloc

+ �(r� r0)�(t� t0)P�1 ��
DC

[{⇢loc}]
�⇢loc

⌃(r, r0) =
X

↵�

⌃↵� P (�↵, r0r) (52)

⌃↵� =

Z Z
P (↵�, r0r)⌃(r, r0)drdr0 (53)

ˆP ⇤ ˆE = I

Glocal↵� =

Z Z
P (↵�, r0r)G(r, r0)drdr0 (54)

Glocal(r, r
0
) =

X

↵�

Glocal↵� P (�↵, r0r) (55)
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Projected local 
Green’s function:
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Additional 
requirement for 

causal DMFT
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(57)

G i m p = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

If projection separable:

requirement
satisfied

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr

k

◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

G(r, r0) = (�(r� r0)(i! + µ+r2 � Vext(r)� Vxc(r))� ⌃

DMFT
(r, r0))�1

Projection

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr

k

◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr

k

◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr

k

◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

G(r, r0) = (�(r� r0)(i! + µ+r2 � Vext(r)� Vxc(r))� ⌃

DMFT
(r, r0))�1

(70)

ˆU

Embedding

SOME FORMULAS FOR SLIDES 5

�r2
+ Vext(r) + Vxc(r) ! t↵�ij(61)

⌃

DMFT
i↵,i� ! ⌃

DMFT
(r, r0)(62)

GDMFT
i↵,i� ,⌃DMFT

i↵,i�(63)

⇢(r),�r2
+ Vext(r) + Vxc(r)(64)

ˆE ⌃

DMFT
i↵,i� ! ⌃(r, r0)

G(r, r0) = (i! + µ+r2 � Vext(r)� Vxc(r)� ˆE ⌃

DMFT
)

�1

GDMFT
i↵,i� =

ˆP G(r, r0)

(65)

Gcc
=

X

k

(i! + µ+

eHcc
k � ⌃)

�1
(66)

✓
Gcc, Gcr

Grc, Grr

◆
=

X

k

✓
i! + µ+Hcc

k � ⌃ �V cr
k

�V rc†
k i! + µ�Hrr

k

◆�1

(67)

(68) Gcc

GDMFT
↵� =

Z Z
drdr0P (↵�, rr0)G(r, r0)

⌃(r, r0) =
X

↵�

E(rr0,↵�)⌃↵�

ˆP ⇤ ˆE = I
ˆE ⇤ ˆP 6= I

ˆP ⇤ ˆE ⌃ = ⌃

ˆE ⇤ ˆP G(r, r0) = GDMFT
(r, r0)(69)

4 SOME FORMULAS FOR SLIDES

�[G] = �

LDA
[⇢] +

X

i2corr
�

DMFT
[Gi↵,i� ]� �

DC
[G](46)

�[G] = �Tr(� @

@⌧
+ µ+r2 � Vext � ⌃)� Tr(⌃G) + �

DFT
[⇢] + �

DMFT
[GDMFT ]� �

DC
[⇢]

��

�G
= (� @

@⌧
+ µ+r2 � Vext � ⌃)

�1 �⌃

�G
� ⌃�G

�⌃

�G
+

��DFT

�⇢
+

��DMFT

�GDMFT
� ��DC

�⇢
= 0

⌃ = VH [⇢] + V DTF
xc [⇢] + ⌃DMFT � ⌃DC

G = (i! + µ+r2 � Vext � ⌃)

�1
(47)

⌃DMFT =

��DMFT
[GDMFT ]

�GDMFT ]
(48)

(49) �

DC
= U

Nc(Nc � 1)

2

� J

2

Nc(
Nc

2

� 1)

(50) ⌃DC =

��DC

�⇢

(51) ⌃DC =

��DC

�Nc
= U(Nc �

1

2

)� J

2

(Nc � 1)

for p electrons

F 0
= U(52)

F 2
= 5J(53)

for d electrons

F 0
= U(54)

F 2
= 14./1.625 J(55)

F 4
= 14.0.625/1.625J(56)

for f electrons

F 0
= U(57)

F 2
= 6435./(286 + 195 ⇤ 0.668 + 250 ⇤ 0.494) ⇤ J(58)

F 4
= 0.668 ⇤ 6435./539.76 ⇤ J(59)

F 6
= 0.494 ⇤ 6435./539.76 ⇤ J(60)

Impurity solver

11

⇧

0
q

⇧

low
q

Glow

⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
(r0⌧ 0)i

�

LDA
xc =

Z

r
�xc[⇢(r)]

Uii = Uimp

Z

rr0
P (↵�, rr0)(

X

↵0�0

E(rr0,�0↵0
)⌃↵0�0

)

�1
r0r = ⌃↵�

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)( )
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REQUIREMENT FOR STATIONARITY (ENERGY)

Return to definition of projector:

Return to saddle point Eq.:

Here we implicitly assumed that  

5

( Ê ⇤ P̂ ) ⇤ ( Ê ⇤ P̂ ) = Ê ⇤ P̂

Glocal ( r, r0 ) = Ê ⇤ P̂G( r, r0 ) ( 5 6 )

1
! � Eimp � ⌃��

= P̂
1

! + r2 � Vext � VH � Vxc � Ê ( ⌃� Vdc )
( 5 7 )

Gimp = ( 5 8 )
= Glocal ( 5 9 )

⌃ ! i1 ( 6 0 )

P̂
1
Ê

= I ( 6 1 )

P ( ↵�, rr0 ) = U† ( ↵r) U ( r0� ) ( 6 2 )

P̂
1
Ê

= U† ( ↵r) U †�1
( r↵0 ) U�1 ( �0r0 ) U ( r0� ) = I ( 6 3 )

��DMFT [{Gloc
↵0�0}]

�G( r, r0 )
=

X

↵�

��DMFT [{Gloc
↵0�0}]

�Gloc
↵�

�Gloc
↵�

�G( r, r0 )
=

X

↵�

��DMFT [{Gloc
↵0�0}]

�Gloc
↵�

P ( ↵�, r0r) ( 6 4 )

Gloc
↵� =

Z Z
drdr0P ( ↵�, r0r) G( r, r0 ) ( 6 5 )

⌃( r, r0 ) =
X

↵�

⌃�↵P ( ↵�, r0r) ( 6 6 )

⌃( r, r0 ) ⌘
X

↵�

E ( rr0,↵� ) ⌃�↵ ( 6 7 )

E ( rr0,↵� ) = P ( ↵�, r0r) ( 6 8 )

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

��DMFT
[{Gloc

↵0�0}]
�G(r, r0)

=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

�Gloc
↵�

�G(r, r0)
=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

P (↵�, r0r) (64)

Gloc
↵� =

Z Z
drdr0P (↵�, r0r)G(r, r0) (65)

⌃(r, r0) =
X

↵�

⌃�↵P (↵�, r0r) (66)

⌃(r, r0) ⌘
X

↵�

E(rr0,↵�)⌃�↵ (67)

E(rr0,↵�) = P (↵�, r0r) (68)

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

��DMFT
[{Gloc

↵0�0}]
�G(r, r0)

=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

�Gloc
↵�

�G(r, r0)
=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

P (↵�, r0r) (64)

Gloc
↵� =

Z Z
drdr0P (↵�, r0r)G(r, r0) (65)

⌃(r, r0) =
X

↵�

⌃�↵P (↵�, r0r) (66)

⌃(r, r0) ⌘
X

↵�

E(rr0,↵�)⌃�↵ (67)

E(rr0,↵�) = P (↵�, r0r) (68)

�P

�G
= 0 (69)

Projector should not depend on the solution
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POSSIBLE PROJECTORS

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

��DMFT
[{Gloc

↵0�0}]
�G(r, r0)

=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

�Gloc
↵�

�G(r, r0)
=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

P (↵�, r0r) (64)

Gloc
↵� =

Z Z
drdr0P (↵�, r0r)G(r, r0) (65)

⌃(r, r0) =
X

↵�

⌃�↵P (↵�, r0r) (66)

⌃(r, r0) ⌘
X

↵�

E(rr0,↵�)⌃�↵ (67)

E(rr0,↵�) = P (↵�, r0r) (68)

�P

�G
= 0 (69)

|Wk↵i =
X

i2LowE

| iki h ik| |�↵0i 1qP
j h�↵| | kji h kj | |�↵0i

(70)Wannier orbitals:

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

��DMFT
[{Gloc

↵0�0}]
�G(r, r0)

=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

�Gloc
↵�

�G(r, r0)
=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

P (↵�, r0r) (64)

Gloc
↵� =

Z Z
drdr0P (↵�, r0r)G(r, r0) (65)

⌃(r, r0) =
X

↵�

⌃�↵P (↵�, r0r) (66)

⌃(r, r0) ⌘
X

↵�

E(rr0,↵�)⌃�↵ (67)

E(rr0,↵�) = P (↵�, r0r) (68)

�P

�G
= 0 (69)

|Wk↵i =
X

i2LowE

| iki h ik| |�↵0i 1qP
j h�↵| | kji h kj | |�↵0i

(70)

 ik (71)

�↵ (72)

KS orbitals

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1

! � Eimp � ⌃��

=

ˆP
1

! +r2 � Vext � VH � Vxc � ˆE(⌃� Vdc)
(57)

Gimp = (58)

= Glocal (59)

⌃ ! i1 (60)

ˆP
1

ˆE
= I (61)

P (↵�, rr0) = U†
(↵r)U(r0�) (62)

ˆP
1

ˆE
= U†

(↵r)U †�1
(r↵0

)U�1
(�0r0)U(r0�) = I (63)

��DMFT
[{Gloc

↵0�0}]
�G(r, r0)

=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

�Gloc
↵�

�G(r, r0)
=

X

↵�

��DMFT
[{Gloc

↵0�0}]
�Gloc

↵�

P (↵�, r0r) (64)

Gloc
↵� =

Z Z
drdr0P (↵�, r0r)G(r, r0) (65)

⌃(r, r0) =
X

↵�

⌃�↵P (↵�, r0r) (66)

⌃(r, r0) ⌘
X

↵�

E(rr0,↵�)⌃�↵ (67)

E(rr0,↵�) = P (↵�, r0r) (68)

�P

�G
= 0 (69)

|Wk↵i =
X

i2LowE

| iki h ik| |�↵0i 1qP
j h�↵| | kji h kj | |�↵0i

(70)

 ik (71)

�↵ (72)localized orbitals

5

(

ˆE ⇤ ˆP ) ⇤ ( ˆE ⇤ ˆP ) =

ˆE ⇤ ˆP

Glocal(r, r
0
) =

ˆE ⇤ ˆPG(r, r0) (56)

1
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0
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Stationarity:
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0
q

⇧
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q
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⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
(r0⌧ 0)i

�

LDA
xc =

Z

r
�xc[⇢(r)]

Uii = Uimp

Z

rr0
P (↵�, rr0)(

X

↵0�0

E(rr0,�0↵0
)⌃↵0�0

)

�1
r0r = ⌃↵�

P 0
(lm, lm0, rr0) = Ylm(

ˆr)�(r � r0)Ylm0
(

ˆr0)

P (lm, lm0, rr0) = Ylm(

ˆr)uLDA
l (r)uLDA

l (r0)Ylm0
(

ˆr0)

LDA+U projector:
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ˆP
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ˆE
= I (61)

Causal DMFT equations: (
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q
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q

Glow

⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) 
†
(r0⌧ 0)i

�

LDA
xc =

Z

r
�xc[⇢(r)]

Uii = Uimp

Z

rr0
P (↵�, rr0)(

X

↵0�0

E(rr0,�0↵0
)⌃↵0�0

)

�1
r0r = ⌃↵� )

Possible choice:
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q

Glow

⇢(r) = G(r⌧, r0⌧ 0)�(⌧ � ⌧ 0)�(r� r0)

G(r⌧, r0⌧ 0) = �hT⌧ (r⌧) †
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�xc[⇢(r)]

Uii = Uimp

Z

rr0
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E(rr0,�0↵0
)⌃↵0�0

)

�1
r0r = ⌃↵�
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�[{G}] !DMFT! �[{Glocal}]

G !DMFT! Glocal

1

|r� r0| !
DMFT! e��|r�r0|

|r� r0|
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IMPURITY SOLVER:

2 SOME FORMULAS FOR SLIDES

(15) ⌃ = �ij
��[Gii]

�Gii

(16) ⌃ii =

(17) �DMFT [G] = �Tr ln(G�1
0 � ⌃ii)� Tr(⌃iiGii) +

X

i

�[Gii]

(18) ⌃ii[Gii, Uiiii]

(19) vc(r� r0) =
1

|r� r0| or Uijlk

(20) �imp[Gimp] = �Tr ln(

@

@⌧
� Eimp ��� ⌃imp)� Tr(⌃impGimp) + �[Gimp]

(21)

��imp

�G
= (

@

@⌧
� Eimp ��� ⌃imp)

�1 �⌃imp

�Gimp
� ⌃imp �Gimp

�⌃imp

�Gimp
+

��[Gimp]

�Gimp

(22) ⌃imp =
��[Gimp]

�Gimp

(23) �[Gii] = �[Gimp]with sum of all skeleteon diagrams.

The quantum impurity problem in DMFT 

• The problem which we need to solve to include many-body effects 
within DFT+DMFT is a general quantum impurity model 

• A set of “orbitals” carrying a local interaction coupled to an 
uncorrelated fermionic bath (set self-consistently) 

 

 

 

 

 

 

• To simplify, we consider a single level coupled to a bath: the 
Anderson model 

Hloc Electronic 
bath 

« Atomic » 
problem with 
several orbitals 

e¡

e¡

2 SOME FORMULAS FOR SLIDES
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0 � ⌃ii)� Tr(⌃iiGii) +

X

i

�[Gii]

(18) ⌃ii[Gii, Uiiii]

(19) vc(r� r0) =
1

|r� r0| or Uijlk

(20) �imp[Gimp] = �Tr ln(
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= (

@

@⌧
� Eimp ��� ⌃imp)

�1 �⌃imp

�Gimp
� ⌃imp �Gimp

�⌃imp

�Gimp
+

��[Gimp]

�Gimp
= 0

(22) ⌃imp =
��[Gimp]

�Gimp

(23) �[Gii] = �[Gimp]

Gimp = Gii(24)

Uimp = UDMFT(25)

⌃ii = ⌃imp(26)

(27) Gimp = (

@

@⌧
� Eimp ��� ⌃imp)

�1

(28)

X

k

(i! + µ� "k � ⌃ii)
�1

= (i! � Eimp ��� ⌃ii)
�1

(29) ⇢(r) = G(r, r)(⌧ = 0)

(30) G(r, r0)(⌧) = �hT⌧ (r, ⌧) 
†
(r0, 0)i
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LW functional:

⌃DMFT =

��DMFT
[GDMFT ]

�GDMFT ]

In the DMFT solution we can compute also the free energy:
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�↵ (72)

P (↵�, rr0) =
X

k

W ⇤
k↵(r)Wk�(r

0
) (73)

G�1
0 �G�1

= �(r� r0)�(t� t0)
��LDA

[{⇢}]
�⇢

+

ˆP�1 ��
DMFT

[{Gloc}]
�Gloc

+ �(r� r0)�(t� t0)P�1 ��
DC

[{⇢loc}]
�⇢loc

�[G] ! �

LDA
[⇢] +

X
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DMFT
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ˆPiG]� �

DC
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ˆPi⇢]) (74)

�[G] ! �

LDA
[⇢] +

X
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DMFT
[Gi

local]� �

DC
[⇢ilocal]) (75)
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imp
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FDFT+DMFT
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[⇢] + �
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CONTINUOUS TIME QMC
P. Werner, PRL (2007); N. Rubtsov PRB 72, 35122 (2005); K.H. Phys. Rev. B 75, 155113 (2007) ; 
Method of choice for DFT+DMFT: CTQMC in hybridization

6 SOME FORMULAS FOR SLIDES

(71)

ˆP ⇤ ( ˆE)

�1
= I

P = U ⌦ U+
(72)

E = U+ ⌦ U(73)

vc =
e2

|r� r0| =
4⇡e2

2l + 1

X

km

Ykm(

ˆr)Y ⇤
km(

ˆr)
rl<

rl+1
>

(74)

(75)

ˆP ⌦ ˆP
e2

|r� r0| = UL1L2L3L4

(76) UL1L2L3L4 =

4⇡

2l + 1

X

km

hYL1 |Ykm|YL4ihYL2 |Y ⇤
km|YL3iFk

(77) Fk ⇡ e2

RMF

(78) �

DC
= UN2

c � · · ·

(79) Wq = (V �1
q � Pq)

�1

WDMFT
= (U�1 � PDMFT )

�1
=

ˆP ⌦ ˆP W exact
(80)

Wmodel�RPA
= (U�1 � PRPA)

�1
=

ˆP ⌦ ˆP WGW
(81)

PRPA = GDMFT ⇤GDMFT(82)

(83) Z =

Z
D[ † ]e�S

atom

�
R
�

0 d⌧
R
�

0 d⌧ 0
P

↵↵

0  
†
↵

(⌧)�(⌧�⌧ 0) 
↵

0 (⌧ 0)

General impurity problem:

SOME FORMULAS FOR SLIDES 7

Z = Z
atom

X

k

1

k!

Z
�

0
d⌧1

Z
�

0
d⌧ 01 · · ·

Z
�

0
d⌧

k

Z
�

0
d⌧ 0

k

X

↵1↵
0
1,↵2,↵

0
2,···↵k↵

0
k

hT
⌧

 
↵

0
1
(⌧ 01) 

†
↵1
(⌧1) · · · 

↵

0
k
(⌧ 0

k

) †
↵k

(⌧
k

)i
atom

⇥

1

k!
Det

0

BB@

�

↵1↵
0
1
(⌧1, ⌧

0
1) �

↵2↵
0
2
(⌧2, ⌧

0
2) · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

�

↵k↵
0
1
(⌧

k

, ⌧ 01) · · · · · · �

↵k↵
0
k
(⌧

k

, ⌧ 0
k

)

1

CCA
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Power expansion in terms Δ, gives series of Feynman diagrams:

Metropolis sampling over the diagrams, very efficient
because perturbation order is Gaussian in order k 

peaked at K/T.

Computational effort 

• Can the contribution of a diagram be computed quickly? 

• Determinants can be updated quickly (Sherman-Morrison) 

• For simple Hamiltonians, the trace is very easy 

 

 

 

 

 

 

 

• Computational effort grows in           

¯

¿ "1 ¿ 0"1 ¿ "2 ¿ 0"2

0

¿ #1 ¿ 0#1

¾ ="
¾ =#

l1 l2

TrC = e(l"+l#)¹¡U(l1+l2)

¯ > l" > 0

¯ > l# > 0

overlap: 

O(n3)

Virtues:
•Exact method: samples all diagrams!
•Allows correct treatment of multiplets
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BEST ALGORITHM FOR CTQMC
Lazy-Skip list 

implementation
arXiv: 1403.7214, P. Semon,  C.H.-Yee, K.H., A.M. Tremblay

Like transportation infrastructure, each 
layer has some extra express lanes for 
faster updates : update time of the order 

of log(N)

Skip-list:

Lazy evaluation of trace:
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LDA
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expensive part:
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if nonzero, all 
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close to 1
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Either very large or very small
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simple estimate of 
upper bound
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DOUBLE COUNTING

LDA functional 

Sum of all skeleton diagrams
local to correlated ions DMFT approximation of the 

LDA functional replacing 

LDA:
with

1

�[G, ˆVC ] ! �

LDA
[⇢,

1

|r� r0| ] ⌘ �

LDA
[�(t� t0)�(r� r0)G(rt, r0t0)] (1)

�[G] ! �[Glocal] (2)

EH [⇢local, ˆVC ] +

Z
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�
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[⇢] =

1

2

Z Z
drdr0

⇢(r)⇢(r0)

|r� r0| +

Z
dr⇢(r)"xc(⇢(r)) (4)

ˆPi
�1

⌘ ˆEi (5)
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0 �G�1
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�
+ �

LDA
(⇢) + �

DMFT
(Gloc)� �

DC
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⇢(r) = �(r� r0)�(t� t0)G(r t, r0 t0) (7)

Gloc i(r t, r
0 t0) = ˆPiG(r t, r0 t0) (8)

G�1
0 = � @

@⌧
+ µ+r2 � Vext (9)

⌃

DMFT ⌘ ˆP�1 ��
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(10)

Vdc ⌘ �(r� r0)�(t� t0) ˆP�1 ��
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(11)

Vint ⌘ �(r� r0)�(t� t0)
��DFT

(⇢)

�⇢
= �(r� r0)�(t� t0)(VHartree + Vxc) (12)

�[⇢, Vint, Gloc,⌃
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@⌧
+ µ+r2 � Vext � Vint � ⌃

DMT
+ Vdc) + �

LDA
[⇢]� Tr(Vint⇢) + �

DMFT
[Gloc]� Tr(⌃
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+ �
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1

�[G, ˆVC ] ! �

LDA
[⇢,

1

|r� r0| ] ⌘ �

LDA
[�(t� t0)�(r� r0)G(rt, r0t0)] (1)
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[⇢] (15)

⇢ = T
X

i!

G(i!, r, r0)�(r� r0) = Tr⌧ (G) (16)

DMFT: 1/2 +1/2 +1/4 +... +...i i
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i
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i
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SOME FORMULAS FOR SLIDES

(1) �[G] = Tr lnG� Tr(⌃G) + �[G]

(2)
��[G]

�G
= 0

(3)
��[G]

�G
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No screening in molecule

Error of total energy using LDA+DMFT <0.2%!

Juho Lee, KH, arXiv:1403.2474
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approximation: Yukawa form
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1) F2 and F4 are not small. Importance of Hunds coupling
2) F0 is 2-4 times too large, JH almost correct 
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COULOMB U Rare Earths:

Experiment:
F2 and F4 screened by 20%
F0 screened much more

Ce-U~6eV Eu-U~11eV

Sm-U~10 eV

Gd-U~12eV
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COULOMB U 
J. Ghijsen et al 

Phys. Rev. B. 42, (1990) 2268.  
Photoemission spectrum of CuO  Cu in d9 S=1/2 state 

Energy below Ef in eV  

Note the atomic like multiplet structure as for the rare earths 

J. Ghijsen et al 

Phys. Rev. B. 42, (1990) 2268.  
Photoemission spectrum of CuO  Cu in d9 S=1/2 state 

Energy below Ef in eV  

Note the atomic like multiplet structure as for the rare earths 

Photoemission of CuO,  Cu in d9

Exact diagonalization of the atom gives quite precise position of the 
peaks

F0=10eV, JH=0.8eV
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REFRESH:HUNDS RULES
F2	
  and	
  F4	
  ensure	
  Hunds	
  (1,2)	
  rules:

1st)	
  Maximize	
  the	
  total	
  spin—spin	
  parallel	
  electrons	
  must	
  be	
  in	
  
different	
  spa@al	
  orbitals	
  which	
  reduces	
  the	
  Coulomb	
  repulsion.

2nd)Rule	
  then	
  maximize	
  the	
  total	
  orbital	
  angular	
  momentum	
  L.	
  This	
  
involves	
  large	
  m	
  quantum	
  numbers	
  and	
  lots	
  of	
  angular	
  lobes	
  and	
  
therefore	
  electrons	
  can	
  avoid	
  each	
  other	
  and	
  lower	
  Coulomb	
  
repulsion

3rd)<	
  half	
  filled	
  shell	
  J=L-­‐S	
  >	
  half	
  filled	
  shell	
  J=L+S	
  (Result	
  of	
  spin	
  
orbit	
  coupling	
  )
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SCREENING OF COULOMB U IN FE-PNICTIDES

The approach shares ideas with other methods to compute
the local interaction matrix U. Like constrained local density
approximation !LDA", it defines correlations on a correlated
orbital. It adopts the philosophy of the constrained random
phase approximation !RPA" method,24,25 which divides the
bands into a set that belongs to the low-energy model, and
the rest of the bands, which contribute to screening. How-
ever, instead of the bands, our method uses orbitals to divide
the polarization operator of the lattice into a local part, in-
volving the correlated orbital, and the rest, which screens the
local interaction.

We now describe the steps required for the practical
implementation of the method and its interface with LDA
+DMFT !Ref. 26": !i" We perform a fully self consistent GW
calculation.1 !ii" We evaluate Gloc and Wloc using the projec-
tor P!rr! , tL1L2", defined in Ref. 27: Glocal L1L2

t

=#drP!rr! , tL1L2"G!rr!" and Wlocal L4L1;L3L2

t =#P!rr , tL4L1"
W!rr!"P!r!r! , tL3L2"drdr!. t is the atom index and L
= !l ,m" is the angular momentum index. !iii" We evaluate
!loc!""=Wlocal!""Glocal!−"" and #loc!""=Glocal!""Glocal!−"".
We use Eq. !2" to evaluate U!$", which we now denote by
UGW. !iv" We also evaluate the hybridization function
%GW!$" using Eq. !1" and identity GGW

0−1
=$−Eimp−%GW. %GW

contains the coupling of the correlated orbitals to the valence
states of the system %L!$", and to the semicore states %H!$",
and can thus be represented as %!i$"=#d&$%L!&"
+%H!&"% / !i$−&". In LDA+DMFT the hybridization to these
semicore state is eliminated resulting in %L, which is con-
nected to GW hybridization by %GW!i$"=%L!i$"− i$',
where '&#d&%H!&" /&2. This factor is then absorbed by res-
caling of the field (→( /'1+' and consequently the inter-
action matrix used in the LDA+DMFT calculation becomes
ULDA+DMFT=UGW!$=0" / !1+'"2. This renormalization is
usually very small, and in BaFe2As2 is '&0.05.

We use this fully ab initio method to determine the inter-
action matrix strength UGW and the occupancy of the d or-
bital nd, which fixes the double-counting correction of
LDA+DMFT. With this input, the LDA+DMFT method be-
comes a fully ab initio method.

The effective interaction obtained with this method is a
general symmetric tensor with four indices
()mi*,))!Um4,m3,m2,m1

(m4)
† (m3)!

† (m2)!(m1). It is useful to in-
quire to which extent this interaction can be approximated in
terms of Slater integrals Fk

)l*, where k runs over 0 , . . .2l. The
optimal determination of this parameters is done with the
projector

Fk
)l* = (

m1,m2,m3,m4

1
Nl,k

4*

2k + 1
+Ylm4

,Ykm4−m1
,Ylm1

-

+ Um4m3m2m1

GW +Ylm3
,Ykm2−m3

! ,Ylm2
- . !3"

Here Nl,0= !2l+1"2, Nl=2,k=1=5!2 /7"2 and Nl=2,k=2
= !10 /21"2. The quality of the projection is excellent and can
be seen by recomputing the Coulomb repulsion from the
Slater integrals and comparing the resulting Uatom with the
full U matrix. We mention in passing that the naive Hartree-
Fock like estimation of Slater integrals J= +Umm!mm!-m!m!,

F2=14 /1.625J, and F4=8.75 /1.625J, can lead to a substan-
tial underestimation of Slater integrals.

III. RESULTS

We first test our method in an arc-typical charge transfer
insulator NiO. We get the following static values of the
Slater integrals F0=7.9 eV, F2=10 eV, and F4=6.7 eV. If
the Hund’s parameter J is computed from F2!F4" we get
J!F2"=1.16 eV!J!F4"=1.24 eV". When these parameter are
used in LDA+DMFT, the agreement between the theory and
experiment is very good.28 We mention in passing that when
the GW screened interaction and polarization are computed
from the LDA Kohn-Sham states !non-self-consistent GW"
we get slightly smaller interaction strength F0&7.2 eV.

Next we turn to the Coulomb repulsion in BaFe2As2. Fig-
ure 1!a" and 1!b" show the frequency dependence of the
Slater integrals for Fe-3d orbitals on imaginary frequency
axis in linear and log scale, respectively. At very high fre-
quency, the interaction is unscreened and approaches its
atomic value. The density-density Coulomb interaction F0 is
strongly screened in the solid, while the higher multipoles F2
and F4 are much less energy dependent, and almost equal in
solid as in the atom.

The static Coulomb interaction F0 is estimated to be no
less then 5 eV, larger then previously estimated by con-
strained LDA11 and constrained RPA.10 We want to remark
that the self-consistency of GW is important in this material,
because the non-self consistent version of GW leads to
weaker interaction strength F0&3.4 eV.

The higher order multipoles F2 and F4 show only a weak
frequency dependence. The highest multipole F4 is less
screened then F2, and hence a single number J does not
parameterize the form of the Hund’s coupling very well, as
J!F2"!J!F4" in Fig. 1!c". Finally Fig. 1!d" shows that the
Slater parametrization of the GW Coulomb interaction is re-
markably accurate in BaFe2As2, with error less then 6%.

FIG. 1. !Color online" !a" and !b" Slater integrals versus Mat-
subara frequency as computed by fully self-consistent GW method,
!c" corresponding Hund’s coupling strength J, and !d" the difference
between the GW Coulomb interaction and its Slater
parameterization.

KUTEPOV et al. PHYSICAL REVIEW B 82, 045105 !2010"

045105-2

Kutepov, KH, S.Y. Savrasov, G. Kotliar, Phys. Rev. B 82, 045105 (2010)..

F0 screened a lot
from 20eV to 5eV 

F2 screened a bit
F4 screened even less

The method of choice:
•extended DMFT equations
•constrain RPA
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HOW TO COMPUTE SCREENING?
Within RPA world, the “fully screened” 
interaction W is the sum of bubbles:
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HOW TO COMPUTE SCREENING?

=
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In exact theory, the “fully screened” 
interaction is vertex corrected:

However, U is not the “fully screened” interaction!
U is screened by the degrees of freedom not taken 

into account by DMFT!
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SCREENING OF COULOMB U
Only screening processes excluded in 

DMFT screen  U!

Imagine we know the exact “fully screened interaction” W.
We also solve the problem by DFT+DMFT at chosen U.
We compute W within DFT+DMFT and when W 
within DFT+DMFT matches the exact W (projected on 
DMFT degrees of freedom) we found correct U. 

Important:

Thought experiment:
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SCREENING OF COULOMB U

We do not know exact W!

Let’s use RPA instead. 

Kutepov, KH, S.Y. Savrasov, G. Kotliar, Phys. Rev. B 82, 045105 (2010)..

We solve the band structure problem with RPA 
(actually called GW)!

We also solve the DMFT problem with RPA (not with DMFT)

with
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CONSTRAINED RPA
F. Aryasetiawan et.al., PRB 70, 195104 (2004)

Similar idea but cutting in space of bands, instead of 
projectors
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The general many-body theorem which can be found in book by Abrikosov-Gorkov-Dzalozinsky is that the second

derivative of Luttinger-Ward functional with respect to G gives the two particle irreducible vertex �. Since in DFT

the Luttinger-Ward functional is �

DFT
[G] = EH [⇢] + Exc[⇢], we have

�

DFT
[G] = �(t� t0)


1

|r� r0| +
�Vxc[⇢](r)

�⇢(r0)

�

To get the response function such as charge susceptibility �, one needs to evaluate all two particle Feynman diagrams

constructed from irreducible vertex � and G and U .

The simplest diagrams to evaluate are bubbles, which leads to

� =

⇧

0
q

1�⇧

0
q�

, (117)

where ⇧

0
q is the RPA polarization bubble.

But in general one should consider also the ladder diagrams (Bethe-Salpeter type), and the combination between

ladder and RPA bubbles, and some other topologies, which do not lead to diagramms already included in the two

particle irreducible vertex. I could come up with a number of such possibilities, all of which is hard to evaluate in

practice.

My question is the following: Is is true that Eq.(117) is exact for DFT. I heard Mazin saying that in one conference,

and I did not understood why. Now I found your and Mazin’s paper, arXiv:cond-mat/9604056v2, which also uses this

statement. I would like to know if there exists a proof of Eq.(117), or is this just the simplest approximation. If it

is the simplest approximation, I completely understand the motivation (easy to evaluate). But if it is exact, I would

like to know why.
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IMPORTANCE OF HUNDS COUPLING

D. Basov, R. Averitt, D. van der Marel, M. Dressel, KH, RMP,  83, 471 (2011)

mass enhancements of optimally doped  
cuprates and iron pnictides very similar. 

Why?

Most of theorists at 
the beginning of iron 

era (2008) were 
proposing weak 
correlations in 

pnictides
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One particle spectra of Hunds metals (pnictides)

BaFe2As2

No clear Hubbard band in one particle spectra
Many theorists took this is a sign of weak correlation strength

Renormalized q.p. peak

High energy not very different from LDA
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Importance of Hund’s rule in pnictides:
Hunds Metals

LDA value
For J=0 there is negligible mass enhancement at U~W!

JHunds

J=0J=0.4

Hubbard U not important
The Hund’s coupling brings correlations!
KH, G. Kotliar,  arXiv:0805.0722 (2008)
New Journal of Physics, 11 025021 (2009).

Significant Correlations in pnictides:
effective mass 3-5 band mass
KH, J.H. Shim, and G. Kotliar, PRL 100, 226402 (2008)

Why are the iron 3d electrons partially 
localized and partially itinerant?

¾Large Hund’s rule coupling (0.8 eV) 
promotes large local moment.

¾Substantially crystal field splitting 
tends to reduce the local moment.

¾Hybridization promotes charge 
fluctuations and further reduces the 
local moment.

A combination of  Hund’s rule coupling, crystal field splitting 
and hybridization leads to the partially localized and 
partially itinerant nature of the iron 3d electrons.

1/9/2014 18Zhiping Yin, Rutgers University

U=4eV
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Histogram of Hunds metals

In oxydes, only a few atomic states 
(one in each valence) with significant
Probability

In pnictides, many states with large
probability -> charge fluctuations are
not efficiently blocked by Coulomb U.
(more itinerant system)

States with high spin more probable
than those with low spin -> gives rise to
non-Fermi liquid physics at intermediate
temperatures, and heavy quasiparticles at 
Low temperatures.

S=2 S=0
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Static ordered moment within DFT

moment<->mass
Some similarity, but also many differences! 

Correlation diagram of Hund’s metals

Good agreement with experiment!(fixed 
U=5eV, J=0.8eV determined by first principles PRB 
82, 045105 (2010)).

Mass enhancement substantial
Electrons have dual nature

Static ordered moment very small

Static ordered moment within LDA+DMFT

NO FITTING PARAMETER

Z. P. Yin, KH, G. Kotliar, Nature Materials (2011)

Mass enhancement & Magnetic moment
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Large fluctuating moment
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Figure 1 | Summary of neutron scattering and calculation results. Our experiments were carried out on the MERLIN time-of-flight chopper spectrometer
at the Rutherford-Appleton Laboratory, UK (ref. 33). We co-aligned 28 g of single crystals of BaFe1.9Ni0.1As2 (with in-plane mosaic of 2.5�and out-of-plane
mosaic of 4�). The incident beam energies were Ei = 20,25,30,80,250,450,600 meV, and mostly with Ei parallel to the c axis. To facilitate easy
comparison with spin waves in BaFe2As2 (ref. 13), we defined the wave vector Q at (qx,qy,qz) as (H,K,L) = (qxa/2⇡ ,qyb/2⇡ ,qzc/2⇡) reciprocal lattice
units (r.l.u.) using the orthorhombic unit cell, where a = b = 5.564 Å, and c = 12.77 Å. The data are normalized to absolute units using a vanadium
standard13, which may have a systematic error up to 20% owing to differences in neutron illumination of the vanadium and sample, and time-of-flight
instruments. a, AF spin structure of BaFe2As2 with Fe spin ordering. The effective magnetic exchange couplings along different directions are shown.
b, RPA and LDA+DMFT calculations of � 00(!) in absolute units for BaFe2As2 and BaFe1.9Ni0.1As2. c, The solid lines show the spin wave dispersions of
BaFe2As2 for J1a 6= J1b, along the [1,K] and [H,0] directions obtained in ref. 13. The filled circles and triangles are the spin excitation dispersions of
BaFe1.9Ni0.1As2 at 5 K and 150 K, respectively. d, The solid line shows the low-energy spin waves of BaFe2As2. The horizontal bars show the full-width at
half-maximum of spin excitations in BaFe1.9Ni0.1As2. e, Energy dependence of � 00(!) for BaFe2As2 (filled blue circles) and BaFe1.9Ni0.1As2 below (filled red
circles) and above (open red circles) Tc. The solid and dashed lines are guides to the eye. The vertical error bars indicate statistical errors of one standard
deviation. The horizontal error bars in e indicate the energy integration range.

constant-energy cuts along the [1,K ] direction for E = 25 ± 5,
55±5, 95±10, 125±10, 150±10, and 210±10meV. The scattering
becomes dispersive for spin excitation energies above 95meV.
Figure 3g–i shows similar constant-energy cuts along the [H ,0]
direction. The solid lines in the figure show identical spin wave
cuts for BaFe2As2 (ref. 13). As both measurements were taken in

absolute units, we can compare the impact of electron doping on
the spin waves in BaFe2As2. At E = 25±5meV, spin excitations in
superconducting BaFe1.9Ni0.1As2 are considerably broader in mo-
mentum space and weaker in intensity than spin waves (Fig. 3a,g).
On increasing the excitation energy to 55± 5meV, the dispersive
spin waves in BaFe2As2 become weaker and broader (Fig. 3b,h).
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f.m. in RPA calculation
(U=0.8eV, J=0.2eV)

f.m. in DMFT
Experiment by Pengcheng Dai 

Large fluctuating moment can not be explained by a 
purely itinerant model - property of Hundsness!

The DMFT account for a dual nature of electrons in 
Hund’s metals:  itinerant and localized nature.

Fluctuating moment by neutrons:

~1.8 µB/Fe

up to 300meV
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  Liu,	
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  (2012)
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Spin wave for Heissenberg model

Isotropic exchangeVery anisotropic exchange

(1,1)

Dynamical structure factor of BaFe2As2

Leland W. Harriger, Pengcheng Dai et al., PRB 84, 054544 (2011).

S(q,ω) in paramagnetic phase similar to AFM phase! 
No anysotropy needed (above TS) to explain neutrons.

H Park, et.al., PRL 107, 137007 (2011)

(1,0)
(1,0)(0,0)

DMFT
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FIG. 1: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
along the path (0,0)!(1,0)!(1,1)!(0.5,0.5)!(0,0) (in the unit of the one-Fe Brillouin zone) for (a) BaFe2P2 (Tmax
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the intensity substantially varies across compounds, the maximum value of intensity was adjusted to emphasize the dispersion
most clearly. The maximum value of the intensity in each compound is shown in the top right corner. The experimental data
shown in (f), (g), (l) and (m) are from Refs. 17–20.

of the fluctuating moment in this energy range, which roughly anti-correlates with strength of correlations, hence
phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
strength or from the band structure. In Fig. 2 we show S(q,!) for the same compounds as in Fig. 1, but we take
a di↵erent cut. We keep the energy fixed at ! = 5meV, and change momentum in the two dimensional momentum
plane (q
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dependence is small for most compounds.) As is clear from Figs. 1a-c, and
Fig. 2a-c, the low energy spin-excitations are almost absent in phosphorus compounds, while they are very strong
in arsenides (Figs. 1d-g) at the commensurate wave vector (q
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, q
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) = (1, 0). This is the ordering wave vector of the
spin-density wave state, which is the ground state of all these compounds except LiFeAs, which is a superconductor
(T
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= 18K). When doped, all these compounds are high-temperature superconductors (T
c

⇡ 37K � 39K). Similarly
chalcogenide FeSe (Fig. 1h) - which becomes superconducting T

c

= 37K under modest pressure p = 3GPa - has
similar low energy spin response as the arsenides superconductors. On the other hand, MgFeGe is a compound with
similar band structure as arsenides21, but quite di↵erent spin response, which is much broader and peaked at q = 0,
hence spin fluctuations are ferromagnetic, in agreement with calculation of Ref.22 showing stable ferromagnetic ground
state. Finally FeTe has also much broader spin-excitations covering large part of the Brillouin zone (see Fig. 2j), and
shows two competing excitations at q=(1,0) and q=(0.5, 0.5), the latter corresponds to the ordering wave vector of
the low-temperature antiferromagnetic state of Fe1.07Te.23 The common theme in high-temperature superconductors
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phosphorus compounds show the weakest (max = 4) and FeTe shows the strongest (max = 20) intensity.

The low energy spin-excitations are much more sensitive to the details of both the band-structure and the two-
particle vertex function, hence the trend across di↵erent compounds can not be guessed from either the correlation
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similar low energy spin response as the arsenides superconductors. On the other hand, MgFeGe is a compound with
similar band structure as arsenides21, but quite di↵erent spin response, which is much broader and peaked at q = 0,
hence spin fluctuations are ferromagnetic, in agreement with calculation of Ref.22 showing stable ferromagnetic ground
state. Finally FeTe has also much broader spin-excitations covering large part of the Brillouin zone (see Fig. 2j), and
shows two competing excitations at q=(1,0) and q=(0.5, 0.5), the latter corresponds to the ordering wave vector of
the low-temperature antiferromagnetic state of Fe1.07Te.23 The common theme in high-temperature superconductors
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FIG. 2: Dynamic spin structure factor S(q,!) in iron pnictides, chalcogenides and MgFeGe. The S(q,!) is plotted
in the 2D plane at constant !=5 meV for the same materials as in Fig.1. The maximum intensity scale for each compound is
marked as a number in the bottom-left corner of each subplot.

(Figs. d-h) is thus the existence of well defined high energy dispersive spin excitations with bandwidth between
0.1 � 0.35 eV, and most importantly very well developed commensurate low energy spin excitations at wave vector
q = (1, 0), consistent with the theory of spin-fluctuation mediated superconductivity24,25.

The pnictide parent compounds SrFe2As2, LaFeAsO, BaFe2As2 have strong peak centered exactly at q = (1, 0), while
in LiFeAs and FeSe the spin excitation is peaked slightly away from this commensurate wave vector. Consequently,
the former three compounds have antiferromagnetic ground state, while the latter two are superconducting. In the
former, electron or hole doping is needed to suppress the long range magnetic order, and to stabilize the competing
superconducting state. In Figs. 1&2f, k-n we illustrate the doping dependence of the spin-excitation spectrum on the
example of electron doped and hole doped BaFe2As2, i.e., BaFe1�x

Ni
x

As2 and Ba1�x

K
x

Fe2As2, respectively. The
electron doping slightly increases the bandwidth (compare Fig. 1(k) with Fig. 1(f)), the hole doping dramatically
reduces the bandwidth from ⇠ 0.2 eV to ⇠ 0.05 eV in overdoped KFe2As220,26 (Fig. 1(n)). The low energy spin
excitations in the electron overdoped BaFe1.7Ni0.3As2 become very weak and strongly incommensurate20 with peak
centered at q=(1.0, 0.35) (see Fig. 2k). Similarly, on the hole overdoped side in KFe2As2, the low-energy spectrum
is suppressed (maximum intensity in Fig. 2n is 15 compared to 100 in the parent compound), and main excitation
peak moves to incommensurate q=(0.75, 0) in agreement with experiment.20,27 The optimally doped compounds
(Figs. 1l,m) have high energy spin excitations very similar to the parent compound, while the low energy excitations
are slightly reduced and broadened in momentum space (Fig. 2l,m), to suppress long range magnetic order of the
parent compound. This is very similar to the spectrum of LiFeAs and FeSe, which both have superconducting ground
state. From these plots, we can deduce that near commensurate or commensurate spin excitations at q = (1, 0),
with some finite width in momentum space to reduce the tendency towards the long-range order, are essential for
superconductivity.

Now we comment on the complexity of the K
x

Fe2�y

Se2 compounds. Our results for KFe2Se2 in Figs. 1&2(o)
indicate strong low energy spin excitation peaked around q = (1, 0.4). Vacancies in the K site, which reduce the
e↵ective electron doping, can move the peak to q = (1, 0) and favor superconductivity. On the other hand, vacancies
in the Fe sites move the peak to q=(0.6, 0.2) to induce novel magnetism in K0.8Fe1.6Se228.

Whereas the dynamic spin structure factor S(q,!) dispersion and the strength of the low energy spin excitations
correlate with experimental T

c

across many families of iron superconductors, the superconducting pairing symmetry
and the variation of the superconducting gaps on the di↵erent Fermi surfaces cannot be extracted from the spin
dynamics alone. To make further progress on this issues, we computed the complete screened interaction between two
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IMPLEMENTATION
DFT code based on Wien2K:  http://www.wien2k.at/ 

DMFT part and interface 
developed at Rutgers:

http://hauleweb.rutgers.edu/

nice manual: 
http://www.wien2k.at/reg_user/textbooks/usersguide.pdf

Tuesday, June 17, 14

http://www.wien2k.at
http://www.wien2k.at
http://hauleweb.rutgers.edu
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TUTORIALS
http://hauleweb.rutgers.edu/tutorials/

Several tutorials to get you familiar with the code.
Starts with very simple cubic system, to Mott insulator that 
requires rotated local basis (LaVO3) to most sophisticated 
5d system which requires rotation and local transformation 
to J=1/2-like states. 

Tuesday, June 17, 14

http://hauleweb.rutgers.edu/tutorials/
http://hauleweb.rutgers.edu/tutorials/


DFT PART

x lapwso :     adds spin-orbit

x lapw1:
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⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)

x lapw0 :
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)

x core :
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)

x mixer: 
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)

init_lapw :
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)

run_lapw ==

x lapw2:

SOME FORMULAS FOR SLIDES 7
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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DFT+DMFT COMBINED

run_dmft.py ==

x lapwso :     adds spin-orbit

run_lapw :

x lapw1:
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x lapw0 :

x core :
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⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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k,i(87)
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⇢DFT
(r)(91)

x_dmft.py dmft2 : 
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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k,i ! ⇢val(r), Evalence(92)

VKS(r), Vext(r) ! ⇢core(r), Ecore(93)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(94)
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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impurity solver : CTQMC,OCA,NCA
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⇢(r) ! VKS(r), Vext(r)
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k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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⇢(r) ! VKS(r), Vext(r)
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k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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⇢atom(r)(86)

⇢(r) ! VKS(r), Vext(r)

VKS(r), Vext(r) ! "DFT
k,i , DFT

k,i(87)

"DFT
k,i , DFT

k,i ! ⇢val(r), Evalence(88)

VKS(r), Vext(r) ! ⇢core(r), Ecore(89)

⇢val + ⇢core, ⇢old(r) ! ⇢new(r)(90)
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dmft1 step

, , , , 
input output

1) Constructs projector:

2) Embeds self-energy:

3) Calculates local Green’s function and hybridization function
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, , , 

dmft2 step

input output

1) Constructs projector:

2) Embeds self-energy:

3) Solves Dyson Eq.:

4) Determines chemical potential:

5) Calculates DMFT electronic charge in 3D space:

6) Calculates valence kinetic energy 
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EXAMPLE 1: IsoStructural transition in 
Ce metal
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EXAMPLE2: Mott insulator LaVO3

Perovskite V-system with 2 electrons 
on V atom which localize

optical conductivity 
with a gap ~ 1.5eV
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Functional view on DFT+DMFT:

Implementation of DFT+DMFT:

Impurity solver :

Screening of interaction:

http://www.physics.rutgers.edu/~haule/509/
http://www.physics.rutgers.edu/~haule/681/Some lecture notes:

arXiv:1403.7214:  P. Sémon, C.-H. Yee, KH, A.-M. S. Tremblay
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http://xxx.lanl.gov/abs/1403.7214
http://xxx.lanl.gov/abs/1403.7214
http://xxx.lanl.gov/find/cond-mat/1/au:+Semon_P/0/1/0/all/0/1
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THANK YOU!
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