DFT+EMBEDDED DYNAMICAL MEAN FIELD THEORY
 FROM FUNCTIONAL PERSPECTIVE

Kristjan Haule

Support:

ACS
Chemistry for Life"

Blavatnik Awards
Yoững Scientists

Latest developments

I. Projectors and locality of correlations
2. Exact double-counting of DFT+EDMFTF:PRL I I5, I96403 (20I5).
3. Stationary free energy functional (within Embedded DMFT approach) for structural optimization, PRLI I5, 256402 (2015).
4. Implementation of Forces within E-DMFT functional for optimization of internal structural parameter, arXiv:1602.028I9.
5. Some details on the structure of the code.

Reminder: LWF and indirect approach

Basic variable is Green's function:
$G\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right)=\left\langle T_{\tau} \psi^{\dagger}\left(\mathbf{r}^{\prime} \tau^{\prime}\right) \psi(\mathbf{r}, \tau)\right\rangle$
== dynamic analog of charge density

$$
\rho(\mathbf{r})=G(\mathbf{r} \tau, \mathbf{r} \tau)
$$

Luttinger-Ward functional (1950):

$$
\Gamma[\{G\}]=-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\underbrace{\operatorname{Tr} \log (-G)+\Phi[\{G\}]}_{\text {material dependent term }}
$$

$$
G_{0}^{-1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left[\omega+\mu+\nabla^{2}-V_{\text {ext }}(\mathbf{r})\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

$\Phi[G]$ Is a sum of all connected two particle irreducible Feynman diagrams (skeleton diagrams).

Other approaches in LW language

Density Functional Theory:

Hartree-Fock approximation:

$$
\begin{gathered}
\Phi[\{G\}] \rightarrow E_{H}[\rho]+E_{X C}[\rho] \\
\quad \text { Exact DFT appears as } \\
\text { an approximation to the Green's function! } \\
E_{x c}[\{\rho\}] \text { local to a point in 3D space in LDA }
\end{gathered}
$$

Truncation in the real sDace
RPA\& GW:

$$
\Phi[\{G\}]=\Phi^{H F}[G]+1 / 4 \infty+1 / 3 \bigcirc O_{0}
$$

Dynamical Mean Field Theory:

$\Phi\left[\left\{G_{i j}\right\}\right] \approx E_{H}[\{\rho\}]+\Phi\left[\left\{G_{i i}\right\}\right]$

all local Feynman diagrams
(in fully dressed perturbation theory)

Functional Point of view

DMFT for lattice models:

$$
\begin{aligned}
\Phi\left[\left\{G_{i j}\right\}\right] & \rightarrow \sum_{i} \Phi\left[\left\{G_{i i}\right\}\right] \\
& i \text { is site or cluster }
\end{aligned}
$$

DMFT for continuous problems:

$$
\Phi[\{G\}] \rightarrow \sum_{\mathbf{R}_{i}} \Phi\left[\left\{\hat{P}_{\mathbf{R}_{i}} G\right\}\right]
$$

Need to define projector to site (or cluster): $\hat{P}_{\mathbf{R}_{i}}$ DMFT is projector dependent approximation

How is correlation potential determined?

In DMFT we want to lift the restriction and compute all correlations local to a given site (not given point in space).

projector defines what is a "site" in DMFT, typically an ion with open d of f shell.

The continuos DMFT problem

DMFT approximation: $\Phi[\{G\}] \rightarrow \sum_{\mathbf{R}_{i}} \Phi\left[\left\{\hat{P}_{\mathbf{R}_{i}} G\right\}\right]$
in continuum requires discretization of projector,

$$
\begin{aligned}
& \hat{P}_{\mathbf{R}_{i}} \rightarrow P_{\mathbf{R}_{i}}(\alpha \beta)=\int d \mathbf{r} d \mathbf{r}^{\prime} \mathcal{P}_{\mathbf{R}_{i}}\left(\alpha \beta ; \mathbf{r r}^{\prime}\right) \\
& \text { for example: } \quad P_{\mathbf{R}_{i}}(\alpha \beta)=\int d \mathbf{r} d \mathbf{r}^{\prime} \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right)
\end{aligned}
$$

where $\phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \equiv\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle \quad$ forms a basis on a given atom so that:

$$
G_{l o c a l}^{i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\substack{\alpha \beta}}\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle\left\langle\phi_{\alpha}^{i}\right| G\left|\phi_{\beta}^{i}\right\rangle\left\langle\phi_{\beta}^{i} \mid \mathbf{r}^{\prime}\right\rangle
$$

HOW LOCAL ARE CORRELATIONS?

Correlations are local in large d (large connectivity z) where DMFT is exact -- Weiss mean field theory

$\mathbf{B}_{i}=\sum_{j \neq i} J_{i j}\left\langle\mathbf{S}_{j}\right\rangle \quad Z=\int \mathcal{D}\left[\psi^{\dagger} \psi\right] e^{-\sum_{i} S_{a t o m}(i)-\sum_{i} \int d \tau d \tau^{\prime} \psi_{i}^{\dagger}(\tau) \dot{\Delta}\left(\tau, \tau^{\prime}\right) \psi_{i}\left(\tau^{\prime}\right)}$
What about finite D? What about 0?
H_{2} molecule:

How local are correlations? $0-\mathrm{D}$ test of the single site DMFT.

Molecular hydrogen: H_{2}

Archetypal problem of strong correlations:

DMFT exact in $\infty \mathbf{D}$, or large connectivity Z
It is not expected to be good for low-D problems (like H2 molecule)

Error of total energy using LDA+DMFT <0.2\%!

DFT+Embedded Dynamical Mean Field Theory

$$
\begin{gathered}
\left.\Gamma[G]=\operatorname{Tr} \log G-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+E_{V c}^{H+X C}[\rho]+\Phi_{V_{\text {VMFT }}}^{D M F T}\left[G_{\text {local }}\right]-\Phi_{V_{\text {DMFT }}}^{H+X C}\left[\rho_{\text {local }}\right]\right) \\
\text { Green's function } \\
G_{0}^{-1}=\left[i \omega_{n}+\mu+\nabla^{2}-V_{n u c}(\mathbf{r})\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\text { non-interacting part of } \mathrm{G}
\end{gathered}
$$

$\Gamma[G]$ Is stationary and gives free energy of the system.

$$
\begin{array}{r}
\frac{\delta \Gamma[G]}{\delta G}=0 \text { because } G^{-1}-G_{0}^{-1}+V_{H+X C} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right)+ \\
+\hat{P} \frac{\delta \Phi^{D M F T}\left[G_{l o c a l}\right]}{\delta G_{l o c a l}}-\hat{P} \frac{\delta \Phi^{D C}\left[\rho_{l o c a l}\right]}{\delta \rho_{\text {local }}} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right)=0
\end{array}
$$

Stationarity : $1^{\text {st }}$ order error in G leads to $2^{\text {nd }}$ order error in free energy.
Note: Migdal-Galitskii formula gives non-stationary total energies in DFT+DMFT.

Embedded Dynamical Mean Field Theory Functional

$\Gamma[G]=\operatorname{Tr} \log G-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+E_{V_{c}}^{H+X C}[\rho]+\Phi_{V_{\text {DMFT }}}^{D M F T}\left[G_{\text {local }}\right]-\Phi_{V_{\text {DMFT }}}^{H+X C}\left[\rho_{\text {local }}\right]$
We extremize a DFT-DMFT functional in real space: no need to build tight-binding model Hamiltonian (Wannier orbitals).

uniform positive background
electron cloud

$$
\begin{gathered}
\text { Auxiliary problem is a } \\
\text { non-interacting problem }
\end{gathered}
$$ in self-consistent medium

electron cloud
interacting ion

> Auxiliary problem is a
> "interacting atom"
> in a self-consistent
> medium/entanglement

Quantum impurity model solved by Monte Carlo

Embedded Dynamical Mean Field Theory Functional

Discretized problem can be handled in similar way as a lattice models. Extremization:

$$
\begin{aligned}
\frac{\delta}{\delta G} \Gamma[\{G\}]=\frac{\delta}{\delta G}\left(\operatorname{Tr} \log G-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)\right)+\frac{\delta E_{V_{c}}^{H+X C}[\rho]}{\delta G} & +\frac{\delta \sum_{\mathbf{R}_{i}} \Phi_{V_{D M F T}}\left[\left\{\int d \mathbf{r} d \mathbf{r}^{\prime} \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) G\left(\mathbf{r r}^{\prime}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right)\right\}\right]}{\delta G} \\
& -\frac{\delta \sum_{\mathbf{R}_{i}} \Phi_{V_{D M F T}}^{H+X C}\left[\left\{\int d \mathbf{r} d \mathbf{r}^{\prime} \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \rho\left(\mathbf{r r}^{\prime}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right)\right\}\right]}{\delta G}
\end{aligned}
$$

Or

$$
\begin{aligned}
\frac{\delta}{\delta G} \Gamma[\{G\}]=G^{-1}-G_{0}^{-1} & +\frac{\delta E_{V_{c}}^{H+X C}[\rho]}{\delta \rho} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) \quad\left(\rho(\mathbf{r})=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) G\left(\mathbf{r} \tau, \mathbf{r}^{\prime} \tau^{\prime}\right)\right) \\
& +\sum_{\alpha \beta} \frac{\delta \Phi_{V_{D M F T}}\left[\left\{G_{l o c a l}^{i}\right\}\right]}{\delta G_{l o c a l}^{i} \beta \alpha} \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right) \\
& \left.\left.-\sum_{\alpha \beta} \frac{\delta \Phi_{V_{D M F T}}^{H+X C}\left[\left\{\rho_{l o c a l}\right\}\right]}{\delta \rho_{l o c a l} \beta \alpha} \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \delta\left(\tau-\tau^{\prime}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right)\right\}\right]=0
\end{aligned}
$$

finally

$$
G^{-1}=G_{0}^{-1}-V_{H+X C}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right)-\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle\left(\Sigma^{i m p}-V^{D C}\right)_{\alpha \beta}\left\langle\phi_{\beta}^{i} \mid \mathbf{r}^{\prime}\right\rangle
$$

Where $\quad \Sigma_{\alpha \beta}^{i m p}=\frac{\delta \Phi_{V_{D M F T}\left[\left\{G_{l o c a l}^{i}\right\}\right]}^{i} \quad \text { and } \quad V_{\alpha \beta}^{D C}=\frac{\delta \Phi_{V_{D M F T}}^{H+X C}\left[\left\{\rho_{\text {local }}\right\}\right]}{\delta G_{l o c a l}{ }^{i} \alpha} \delta\left(\tau-\tau^{\prime}\right), ~(\beta \alpha}{i}$

Embedded Dynamical Mean Field Theory Functional

$$
\begin{gathered}
G^{-1}=G_{0}^{-1}-\underbrace{V_{H+X C}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right.}_{D F T})-\underbrace{\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle\left(\Sigma^{i m p}-V^{D C}\right)_{\alpha \beta}\left\langle\phi_{\beta}^{i} \mid \mathbf{r}^{\prime}\right\rangle}_{\text {quantum impurity S. embedded }} \\
\text { Where } \Sigma_{\alpha \beta}^{i m p}=\frac{\delta \Phi_{V_{D M F T}}\left[\left\{G_{l o c a l}^{i}\right\}\right]}{\delta G_{\text {local } \beta \alpha}^{i}} \text { and } \quad V_{\alpha \beta}^{D C}=\frac{\delta \Phi_{V_{D M F T}}^{H+X C}\left[\left\{\rho_{\text {local }}\right\}\right]}{\delta \rho_{\text {local } \beta \alpha}} \delta\left(\tau-\tau^{\prime}\right)
\end{gathered}
$$

On each correlated site \mathbf{R}_{i} we have to solve a $\Sigma_{\alpha \beta}^{i m p}=\frac{\delta \Phi_{V_{D M F T}}\left[\left\{G_{l o c a l}^{i}\right\}\right]}{\delta G_{l o c a l ~}^{i} \alpha}$
quantum impurity model with $\alpha \beta$ orbitals
And Embed self-energies to continuum space by $\quad\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle \Sigma_{\alpha \beta}^{i m p}\left\langle\phi_{\beta}^{i} \mid \mathbf{r}^{\prime}\right\rangle$
Notice that once the projector is defined, embedding is uniquely given by the same matrix elements of

$$
\mathcal{P}_{\mathbf{R}_{i}}\left(\alpha \beta ; \mathbf{r r}^{\prime}\right)=\phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right) \phi_{\beta}^{*}\left(\mathbf{r}^{\prime}-\mathbf{R}_{i}\right)
$$

REQUIREMENT FOR STATIONARITY

Projector should not depend on the solution
Return to definition of the projector:

$$
G_{l o c a l, \mathbf{R}_{i}, \alpha \beta}=\int_{\mathbf{r r}^{\prime}} \mathcal{P}_{\mathbf{R}_{i}}\left(\alpha \beta ; \mathbf{r r}^{\prime}\right) G\left(\mathbf{r r}^{\prime}\right)
$$

Return to saddle point Eq.:

Here we implicitly assumed that $\frac{\delta P}{\delta G}=0$ or $\frac{\delta \phi_{\alpha}\left(\mathbf{r}-\mathbf{R}_{i}\right)}{\delta \rho}=0$ otherwise more complicated terms would appear...
Requirement: $\quad \frac{\delta P}{\delta G}=0$ is not satisfied with Wannier functions because they essentially depend on the charge, and hence on G.

Double-Counting

Some part of exchange/correlations counted in both approximations.

Double-Counting

$\underset{\text { Exact }}{\Phi[\{G\}]} \Rightarrow E_{V_{c}}^{H+X C}[\{\rho\}]+\sum_{\mathbf{R}_{i} \in \text { corr }} \Phi_{V_{D M F T}}\left[\left\{G_{\text {local }}^{i}\right\}\right]-\Phi_{V_{D M F T}}^{H+X C}\left[\left\{\rho_{\text {local }}^{i}\right\}\right]$
functional
approximated

Sum of all skeleton diagrams
LDA functional local to correlated ions

DC : intersection of DMFT and LDA approximation

Hartree: $\quad E_{V_{C}}^{H}\left[\{\rho\}=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)\right.$
LDA-XC: $\quad \Phi_{V_{C}}[\{G\}] \rightarrow E_{X C}^{L D A}[\{\rho\}]=\int d \mathbf{r} \rho(\mathbf{r}) \varepsilon_{V_{C}}^{X C}(\rho(\mathbf{r}))$

DMFT: $\Phi_{V_{C}}[\{G\}] \rightarrow \Phi_{V_{D M F T}}\left[\left\{G_{\text {local }}\right\}\right]$
$\boldsymbol{\Phi}^{\text {DMFT }}$ sums all Feyn. graphs (just like the exact $\boldsymbol{\Phi}$) but uses only Glocal and screened interaction instead of full G and V_{c}

$$
\begin{aligned}
& V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e^{-\lambda\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \quad \Phi\left[G_{\text {local } \left., \mathbf{R}_{i}\right]}=1 / 20_{i}^{+1 / 2 i}\right. \\
& \text { xample of screened Coulomb repulsion }
\end{aligned}
$$

Double-Counting of Hartree

Exact Hartree: $\quad E_{V_{C}}^{H}[\rho]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)$

LDA approximation

Exact Hartree Hartree term included

$$
E_{V_{C}}^{H}[\rho]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)
$$

$$
E_{D M F T}^{H}[\rho]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime}(\hat{P} \rho(\mathbf{r}))\left(\hat{P} \rho\left(\mathbf{r}^{\prime}\right)\right) V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

This approximation for Hartree term appears in $\Phi^{D M F T}$

Double counting to subtract is the DMFT approximation for the Hartree term:

$$
\Phi_{D M F T}^{D C, H \text { artree }}[\{\rho\}]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime}(\hat{P} \rho(\mathbf{r}))\left(\hat{P} \rho\left(\mathbf{r}^{\prime}\right)\right) V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

Double-Counting of Exchange

Exact Exchange: $\quad E^{X}[\rho]=-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}, \mathbf{r}\right) V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)$

LDA approximation:
 exchange of electron gas, matching electron density

$$
\begin{aligned}
E_{F} & =\left(2 \pi^{2} \rho\right)^{2 / 3} /(2 m) \text { and } \\
\rho_{\sigma}^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) & =\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} f\left(\frac{k^{2}}{2 m}-E_{F}\right) \\
E_{L D A}^{X}[\rho] & =-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho^{0}\left(\mathbf{r}^{\prime}, \mathbf{r}\right) V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \\
E_{L D A}^{X}[\rho] & =-\frac{0.9163 \mathrm{Ry}}{\left(\frac{3}{4 \pi} \rho\right)^{1 / 3}}
\end{aligned}
$$

$$
E_{V_{D M F T}}^{X}[\{\rho\}]=-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime}\left(\sum_{m m^{\prime}}\left\langle\mathbf{r} \phi_{m}^{i}\right\rangle\left\langle\phi_{m}^{i}\right| \rho\left|\phi_{m^{\prime}}^{i}\right\rangle\left\langle\phi_{m^{\prime}}^{i} \mid \mathbf{r}^{\prime}\right\rangle\right)\left(\sum_{m^{\prime \prime \prime} m^{\prime \prime \prime}}\left\langle\mathbf{r}^{\prime} \mid \phi_{m^{\prime \prime}}^{i}\right\rangle\left\langle\phi_{m^{\prime \prime}}^{i}\right| \rho\left|\phi_{m^{\prime \prime \prime}}^{i}\right\rangle\left\langle\phi_{m, \prime \prime \prime}^{i} \mid \mathbf{r}\right\rangle\right) V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

$$
=-\frac{1}{2} \sum_{m, m^{\prime}, m^{\prime \prime}, m^{\prime \prime}}\left\langle\phi_{m}^{i}\right| \rho\left|\phi_{m^{\prime}}^{i}\right\rangle\left\langle\phi_{m^{\prime \prime}}^{i}\right| \rho\left|\phi_{m^{\prime \prime \prime}}^{i}\right\rangle \int d \mathbf{r d \mathbf { r } ^ { \prime } \phi _ { m ^ { \prime \prime } } ^ { i , \prime } (\mathbf { r }) \phi _ { m ^ { \prime } } ^ { i , } , \mathbf { r } ^ { \prime }) V _ { D M F T } (\mathbf { r } - \mathbf { r } ^ { \prime }) \phi _ { m ^ { \prime \prime } } ^ { i } (\mathbf { r } ^ { \prime }) \phi _ { m } ^ { i } (\mathbf { r })}
$$

$$
=-\frac{1}{2} \sum_{m, m^{\prime}, m^{\prime \prime}, m^{\prime \prime}} \rho_{m m^{\prime}}^{i} \rho_{m^{\prime \prime} m^{\prime \prime \prime}}^{i}\left\langle\phi_{m^{\prime \prime}}^{i} \phi_{m^{\prime}}^{i}\right| V_{D M F T}\left|\phi_{m^{\prime \prime}}^{i} \phi_{m}^{i}\right\rangle
$$

Double-Counting of Exchange

Exact Exchange: $\quad E^{X}[\rho]=-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}, \mathbf{r}\right) V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)$

LDA approximation: exchange of electron gas, matching electron density

$$
\begin{aligned}
E_{F} & =\left(2 \pi^{2} \rho\right)^{2 / 3} /(2 m) \text { and } \\
\rho_{\sigma}^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) & =\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} f\left(\frac{k^{2}}{2 m}-E_{F}\right) \\
E_{L D A}^{X}[\rho] & =-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho^{0}\left(\mathbf{r}^{\prime}, \mathbf{r}\right) V_{C}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
\end{aligned}
$$

Intersection of both approximations: apply both approximations to the functional

1) Interaction is screened in DC term
2) Use projected density in DC term
3) Replace exact expression by electron gas expression

Result is: $\Phi^{D C, X}=-\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho^{0}\left(\mathbf{r}^{\prime} \mathbf{r}\right) V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$

$$
\rho^{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} f\left(\frac{k^{2}}{2 m}-E_{F}\right), \quad E_{F}=\left(2 \pi^{2}(\hat{P} \rho)^{2 / 3}\right) /(2 m)
$$

Double-Counting of Correlations

KH, PRL I I5, I96403 (20|5).

Double $\quad \Phi^{D C}\left[\rho_{\text {local }}\right]=\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \rho_{\text {local }}(\mathbf{r}) V_{D M F T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho_{\text {local }}\left(\mathbf{r}^{\prime}\right)+$ counting:

$$
+\int d \mathbf{r} \rho_{\text {local }}(\mathbf{r}) \epsilon_{x c}^{V_{D M F T}}\left[\rho_{\text {local }}(\mathbf{r})\right]
$$

electron gas interacting with screened Coulomb interaction

Stationary Free Energy Functional

$$
\delta \Gamma[G] / \delta G=0
$$

For numeric stability, the stationary DFT+DMFT functional is needed but the implementation is challenging.
$\Gamma[G]=\operatorname{Tr} \log G-\operatorname{Tr}\left[\left(G_{0}^{-1}-G^{-1}\right) G\right]+E^{H}[\rho]+E^{x c}[\rho]+\Phi^{\mathrm{DMFT}}[\hat{P} G]-\Phi^{\mathrm{DC}}[\hat{P} \rho]+E_{\text {nuc-nuc }}$
Very hard to compute

Idea : Use the free energy $F_{\text {imp }}$ of the auxiliary impurity problem:

$$
F_{i m p}=\operatorname{Tr} \log G_{i m p}-\operatorname{Tr}\left(\sum_{i m p} G_{i m p}\right)+\Phi\left[G_{i m p}\right] \quad \text { and } \quad \Phi\left[G_{i m p}\right]==\Phi[\hat{P} G]
$$

$$
F_{\text {solid }}=F_{i m p}+\operatorname{Tr} \log G-\operatorname{Tr} \log G_{i m p}+E^{H}+E^{X C}+E_{n u c-n u c}-\Phi^{D C}[\{\hat{P} \rho\}]
$$

For the impurity problem we can compute with CTQMC very precisely all necessary quantities

$$
\begin{aligned}
& F_{i m p}=\operatorname{Tr}\left(\left(\Delta+\varepsilon_{i m p}-\omega_{n} \frac{d \Delta}{d \omega_{n}}\right) G_{i m p}\right)+E_{i m p}^{\text {potential }}-T S_{i m p} \\
& S_{i m p}(T)=S_{i m p}\left(T_{>}\right)-\frac{E_{i m p}\left(T_{>}\right)}{T_{>}}+\frac{E_{i m p}(T)}{T}-\int_{1 / T_{>}}^{1 / T} E_{i m p}(1 / \beta) d \beta
\end{aligned}
$$

Details of the implementation in supplementary of PRL115, 256402 (2015).

paramagnetic Mott insulator FeO

comparison with other functionals
FeO

Example SrVO_{3}

Haule \& Birol, PRL115, 256402 (2015).

Isostructural transition in elemental Cerium

First order (entropy driven) transition

Embedded Dynamical Mean Field Theory Functional

Stationary Embedded DMFT functional extremized in real space.

Free energy functional can be analytically differentiated to give forces on all atoms.

Can predict complex crystal structures

Force on all atoms from derivative of the functional

$$
\frac{\delta \Gamma[G]}{\delta \mathbf{R}_{\mu}}=\frac{\delta G}{\delta \mathbf{R}_{\mu}}\left(\frac{\partial \Gamma[G]}{\partial G}\right)_{R_{R}}+\left(\frac{\partial \Gamma[G]}{\partial \mathbf{R}_{\mu}}\right)_{G}
$$

$$
\frac{\delta \Gamma[\{G\}]}{\delta \mathbf{R}_{\mu}}=\frac{\partial}{\partial \mathbf{R}_{\mu}}\left(\operatorname{Tr} \log (G)-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+\Phi[\{G\}]+E_{n u c-n u c}\right)_{G}
$$

$$
=\frac{\partial}{\partial \mathbf{R}_{\mu}}\left(-\operatorname{Tr}\left(\left[i \omega+\mu+\nabla^{2}-V_{n u c}(\mathbf{r})\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) G\right)+E_{n u c-n u c}\right)
$$

$$
=\operatorname{Tr}\left(\rho \frac{\partial}{\partial \mathbf{R}_{\mu}} V_{n u c}\right)+\frac{\partial}{\partial \mathbf{R}_{\mu}} E_{n u c}
$$

$$
\mathbf{F}^{H F}=-\operatorname{Tr}\left(\rho \frac{\partial V_{n u c}}{\partial \mathbf{R}_{\mu}}\right)-\frac{\partial E_{n u c}}{\partial \mathbf{R}_{\mu}}
$$

The Hellman-Feynman force

Force on all atoms from derivative of the functional

But the LAPW basis set, and the DMFT projector, are not "Pulay forces" appear fixed in space, but rather move with the atom.

We need to differentiate the implemented expression for the free energy.

Free energy expression again

Recall:
$\Gamma[\{G\}]=\operatorname{Tr} \log G-\operatorname{Tr}\left(\left(G_{0}^{-1}-G^{-1}\right) G\right)+E_{V_{C}}^{H+X C}[\rho]+\sum_{\mathbf{R}_{i} \in \operatorname{corr}} \Phi_{V_{D M F T}}^{D M F T}\left[G_{l o c}^{i}\right]-\Phi_{V_{D M F T}}^{D C}\left[\rho_{l o c}^{i}\right]$
at the DMFT solution the Dyson Eq. is satisfied

$$
G^{-1}=G_{0}^{-1}-V_{H+X C}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right)-\left\langle\mathbf{r} \mid \phi_{\alpha}^{i}\right\rangle\left(\Sigma^{i m p}-V^{D C}\right)_{\alpha \beta}\left\langle\phi_{\beta}^{i} \mid \mathbf{r}^{\prime}\right\rangle
$$

hence the free can be computed by

$$
\begin{aligned}
& \left.\left.F=\operatorname{Tr} \log (G)-\operatorname{Tr}\left(V_{H+X C}\right) \rho\right)+E^{H+X C}[\rho]\right) \\
& +\sum_{\mathbf{R}_{i}}\left\{-\operatorname{Tr}\left(\left(\Sigma^{i m p}-V^{D C}\right) G_{l o c}^{i}\right)+\Phi^{D M F T}\left[G_{l o c}^{i}\right]-\Phi^{D C}\left[\rho_{l o c}^{i}\right]\right\}
\end{aligned}
$$

nuclear-nuclear energy is added; canonical ensemble needs $+\mu \mathrm{N}$

Free energy expression implementation

To implement $\operatorname{Tr} \log G$ we compute generalized Kohn-Sham orbitals:
$\left\langle\psi_{j \mathbf{k} \omega_{n}}\right|\left(T+V_{n u c}+V_{H+X C}+\sum_{m m^{\prime}, \mathbf{R}_{\mu}}\left|\phi_{m}^{\mu}\right\rangle\left\langle\phi_{m}^{\mu}\right| \Sigma_{i \omega_{n}}-V_{D C}\left|\phi_{m^{\prime}}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\mu}\right|\right)\left|\psi_{i \mathbf{k} \omega_{n}}\right\rangle=\delta_{i j} \varepsilon_{\mathbf{k} \omega_{n}, i}$
so that $\left\langle\psi_{j \mathbf{k} \omega_{n}}\right| G\left|\psi_{i \mathbf{k} \omega_{n}}\right\rangle=\frac{\delta_{i j}}{i \omega_{n}+\mu-\varepsilon_{\mathbf{k} \omega_{n}, i}}$,i.e., G is diagonalized
then

$$
\begin{gathered}
\operatorname{Tr} \log (-G)=-\operatorname{Tr} \log \left(-i \omega_{n}-\mu+\varepsilon_{\mathbf{k} \omega_{n}}\right) \\
\quad \text { and }
\end{gathered}
$$

$$
\begin{aligned}
F=-\operatorname{Tr} \log \left(-i \omega_{n}-\right. & \left.\left.\mu+\varepsilon_{\mathbf{k} \omega_{n}}\right)-\operatorname{Tr}\left(V_{H+X C}\right) \rho\right)+E^{H+X C}[\rho]+E_{n u c-n u c}+\mu N \\
& +\sum_{\mathbf{R}_{i}}\left\{-\operatorname{Tr}\left(\left(\Sigma-V_{D C}\right) G_{l o c}^{i}\right)+\Phi^{D M F T}\left[G_{l o c}^{i}\right]-\Phi^{D C}\left[\rho_{l o c}^{i}\right]\right\}
\end{aligned}
$$

Derivative of the free energy

The free energy :

$$
\begin{aligned}
& -\operatorname{Tr}\left(G_{l o c} \frac{\delta \Sigma-\delta V_{D C}}{\delta \mathbf{R}_{\mu}}\right) \\
& \frac{\delta F}{\delta \mathbf{R}_{\mu}}=\operatorname{Tr}\left(\frac{1}{i \omega+\mu-\varepsilon_{\mathbf{k} \omega_{n}}} \frac{\delta\left(\varepsilon_{\mathbf{k} \omega_{n}}\right)}{\delta \mathbf{R}_{\mu}}\right)-\operatorname{Tr}\left(\rho \frac{\delta\left(V_{K S}\right.}{\delta \mathbf{R}_{\mu}}\right. \\
& \text { Recall: } \quad \mathbf{F}^{H F}=-\operatorname{Tr}\left(\rho \frac{\partial V_{n u c}}{\partial \mathbf{R}_{\mu}}\right)-\frac{\partial E_{n u c}}{\partial \mathbf{R}_{\mu}}
\end{aligned}
$$

Derivative of the free energy

$\delta \Sigma(\omega)$ very hard to compute. appears in two terms.

But: Functional is stationary, and $\quad \delta \Sigma(\omega)$ cancel out.

KH, arXiv:1602.028I9.

Derivative of the free energy

To prove that $\delta\left(\Sigma-V_{D C}\right)$ cancels, we recall eigenvalue Eq.
$\left\langle\psi_{i \mathbf{k} \omega_{n} \mid}\left(T+V_{n u c}+V_{H+X C}+\sum_{m m^{\prime}, \mathbf{R}_{\mu}}\left|\phi_{m}^{\mu}\right\rangle\left\langle\phi_{m}^{\mu}\right| \Sigma_{i w_{n}}-V_{D C}\left|\phi_{m^{\prime}}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\prime \prime}\right|\right)-\varepsilon_{\mathbf{k \omega _ { n } , i}} \mid \psi_{i \mathbf{k} \omega_{n}}\right\rangle=0$
which is satisfied for each atomic position \mathbf{R}_{μ} hence
$\left\langle\psi_{i \mathbf{k} \omega_{n}}\right|\left(\delta\left(T+V_{n u c}+V_{H+X C}\right)+\sum_{m m^{\prime}, \mathbf{R}_{\mu}} \delta\left(\left|\phi_{m}^{\mu}\right\rangle\left\langle\phi_{m}^{\mu}\right| \Sigma_{i \omega_{n}}-V_{D C}\left|\phi_{m^{\prime}}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{i}\right|\right)\right)-\delta \varepsilon_{\mathbf{k} \omega_{n}, i}\left|\psi_{i \mathbf{k} \omega_{n}}\right\rangle=0$
therefore $\quad \delta \varepsilon_{\mathbf{k} \omega_{n}, i}=\sum_{\mathbf{R}_{\mu}, m m^{\prime}}\left\langle\psi_{i \mathbf{k} \omega_{n}} \mid \phi_{m}^{\mu}\right\rangle\left\langle\phi_{m}^{\mu}\right| \delta\left(\Sigma-V_{D C}\right)\left|\phi_{m^{\prime}}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\mu} \mid \psi_{i \mathbf{k} \omega_{n}}\right\rangle+\ldots$
....+derivative of the projector+DFT terms
hence
$\operatorname{Tr}\left(\frac{\delta \varepsilon_{\mathbf{k} \omega_{n}}}{i \omega+\mu-\varepsilon_{\mathbf{k} \omega_{n}}}\right)=\operatorname{Tr}\left(\left|\psi_{i \mathbf{k} \omega_{n}}\right\rangle \frac{1}{i \omega+\mu-\varepsilon_{\mathbf{k} \omega_{n}}}\left\langle\psi_{i \mathbf{k} \omega_{n}}\right| \sum_{\mathbf{R}_{\mu}, m m^{\prime}}\left|\phi_{m}^{\mu}\right\rangle\left\langle\phi_{m}^{\mu}\right| \delta\left(\Sigma-V_{D C}\right)\left|\phi_{m^{\prime}}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\mu}\right|\right)+\ldots$

Final results for forces in a mixed basis set

Pulay force in mixed basis:
DFT-like terms

$$
\mathbf{F}_{\mu}^{P u l y}=\frac{\left.-\operatorname{Tr}\left(\widetilde{\rho} A^{0 \dagger} \frac{\delta H^{0}}{\delta \mathbf{R}_{\mu}} A^{0}-\widetilde{(\rho \varepsilon)} A^{0 \dagger} \frac{\delta O}{\delta \mathbf{R}_{\mu}} A^{0}\right)+\operatorname{Tr}\left(\rho \frac{\delta V_{K S}}{\delta \mathbf{R}_{\mu}}\right)\right)}{-\frac{1}{\beta} \sum_{i \omega_{n}} \sum_{\mathbf{K} \mathbf{K}^{\prime}, m^{\prime} m}\left(\bar{G}_{\mathbf{K K}^{\prime}}\left(\Sigma-V_{D C}\right)_{m^{\prime} m} \frac{\delta\left(\left\langle\chi_{\mathbf{K}^{\prime}} \mid \phi_{m^{\prime}}\right\rangle\left\langle\phi_{m} \mid \chi_{\mathbf{K}}\right\rangle\right)}{\delta \mathbf{R}_{\mu}}\right)}
$$

derivative of the DMFT projector, because the DMF basis moves with the atom
depends on the DMFT density matrices

$$
\begin{aligned}
\widetilde{\rho} & \equiv \frac{1}{\beta} \sum_{i \omega_{n}} B_{\omega_{n}}^{R} \frac{1}{i \omega_{n}+\mu-\varepsilon_{\mathbf{k} \omega_{n}}} B_{\omega_{n}}^{L} \\
\widetilde{(\rho \varepsilon)} & \equiv \frac{1}{\beta} \sum_{i \omega_{n}} B_{\omega_{n}}^{R} \frac{\varepsilon_{\mathbf{k} \omega_{n}}}{i \omega_{n}+\mu-\varepsilon_{\mathbf{k} \omega_{n}}} B_{\omega_{n}}^{L}
\end{aligned}
$$

Success: Forces do not depend on $\Phi[G]$ or $\quad \delta \Sigma / \delta G=\delta^{2} \Phi / \delta G^{2}$
which are hard to compute.

KH, arXiv:1602.028I9.

Forces more stable than free energies

Optimizing FeSe structure - Hunds metal

exp(a): T. M. McQueen, ... R.J.Cava, PRB 79, 014522 (2009).
$\exp (b):$ R. S. Kumar, ... C. Chen, The Journal of Physical Chemistry B 114, 12597 (2010).

Electronic structure package: EDMFTF

Download: http://hauleweb.rutgers.edu/tutorials

Some tutorials:

DMFT_W2K Tutorials and Installation Instructions

- Installation
- Overview
- Tutorial on single band Hubbard model
- Tutorial 1 on SrVO_{3}
- Tutorial 2 on LaVO_{3}
- Tutorial 3 on elemental Cerium
- Tutorial 4 on $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$
- Projection \& Embedding instead of downloading in the full potential (APW+lo,LAPW) basis.
- Continuous time quantum Monte Carlo, OCA, NCA...
- Stationary implementation of free energy
- Forces on all atoms

Database:

DFT PART

init_lapw : $\rho^{\text {atom }}(\mathbf{r})$

$$
\text { run_lapw }==\text {) } \times \text { lapw } 0: V_{e x t}(\mathbf{r}) \rho(\mathbf{r}) \rightarrow V_{K S}(\mathbf{r})
$$

\times core : $V_{K S}(\mathbf{r}), V_{\text {ext }}(\mathbf{r}) \rightarrow \rho_{\text {core }}(\mathbf{r}), E_{\text {core }}$
\times lapwso : adds spin-orbit
\times lapw2: $\varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow \rho^{v a l}(\mathbf{r}), E_{\text {valence }}$

DFT+DMFT COMBINED

run_lapw : $\rho^{D F T}(\mathbf{r})$
run_dmft.py == \times lapw0 $: V_{\text {ext }}(\mathbf{r}) \rho(\mathbf{r}) \rightarrow V_{K S}(\mathbf{r})$

\times core : $V_{K S}(\mathbf{r}), V_{\text {ext }}(\mathbf{r}) \rightarrow \rho_{\text {core }}(\mathbf{r}), E_{\text {core }} \quad \times$ lapwso: adds spin-orbit
x_dmft.py dmft2 :
$\Sigma^{D M F T}(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi \underset{\mathbf{k}, i}{D F T} \rightarrow \rho^{v a l}(\mathbf{r}), E_{\text {valence }}$
x_dmft.py dmft I:
$\Sigma^{D M F T}(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow G^{D M F T}(\mathbf{r}), \Delta(\omega)$
impurity solver: СTQMC,OCA,NCA

$$
\Delta(\omega), E_{i m p} \rightarrow \Sigma(\omega), G^{D M F T}
$$

I) Construct projector: $\quad P\left(\mathbf{r r}^{\prime}, \mathbf{R}_{\mu}, m m^{\prime}\right)=\left\langle\mathbf{r} \mid \phi_{m}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\mu} \mid \mathbf{r}^{\prime}\right\rangle$

$$
\text { where }\left\langle\mathbf{r} \mid \phi_{m}^{\mu}\right\rangle=u_{l}\left(\left|\mathbf{r}-\mathbf{R}_{\mu}\right|\right) Y_{l m}\left(\widehat{\mathbf{r - \mathbf { R } _ { \mu }}}\right)
$$

2) Embed self-energy: $\bar{\Sigma}_{i j}(\mathbf{k}, \omega)=\sum_{\mathbf{R}_{\mu}}\left\langle\psi_{\mathbf{k}, i}^{D F T} \mid \phi_{m}^{\mu}\right\rangle\left(\Sigma_{m m^{\prime}}^{\mu}(\omega)-V_{D C}^{\mu}\right)\left\langle\phi_{m^{\prime}}^{\mu} \mid \psi_{\mathbf{k}, j}^{D F T}\right\rangle$
3) Calculate local Green's function, hybridization, imp. levels:
$\underbrace{G_{l o c a l m m^{\prime}}^{\mu}=\sum_{\mathbf{k}, i j}\left\langle\phi_{m}^{\mu} \mid \psi_{\mathbf{k}, i}^{D F T}\right\rangle\left(\omega+\mu-\varepsilon_{\mathbf{k}}-\bar{\Sigma}(\mathbf{k}, \omega)\right)_{i j}^{-1}\left\langle\psi_{\mathbf{k}, j}^{D T T} \mid \phi_{m^{\prime}}^{\mu}\right\rangle=\left(\frac{1}{\omega-E_{i m p}^{\mu}-\Sigma^{\mu}(\omega)-\Delta^{\mu}(\omega)}\right)_{m m^{\prime}}}$
symmetrization over all group operations is performed
x_dmft.py dmft2 :
$\Sigma^{D M F T}(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T} \rightarrow \rho^{v a l}(\mathbf{r}), E_{\text {valence }}$

$$
\begin{array}{cc}
\text { input } & \text { output } \\
\Sigma(\omega), \varepsilon_{\mathbf{k}, i}^{D F T}, \psi_{\mathbf{k}, i}^{D F T}(\mathbf{r}) \longrightarrow & \begin{array}{c}
\text { val } \\
\rho_{\text {val }}^{D M F T}(\mathbf{r}), E_{\text {valence }}, F_{\text {valence }}, \mathbf{F}^{\mathbf{R}_{\mu}}
\end{array}
\end{array}
$$

I) Construct projector: $\quad P\left(\mathbf{r r}^{\prime}, \mathbf{R}_{\mu}, m m^{\prime}\right)=\left\langle\mathbf{r} \mid \phi_{m}^{\mu}\right\rangle\left\langle\phi_{m^{\prime}}^{\mu} \mid \mathbf{r}^{\prime}\right\rangle$

$$
\text { where }\left\langle\mathbf{r} \mid \phi_{m}^{\mu}\right\rangle=u_{l}\left(\left|\mathbf{r}-\mathbf{R}_{\mu}\right|\right) Y_{l m}\left(\widehat{\mathbf{r}-\mathbf{R}_{\mu}}\right)
$$

2) Embed self-energy: $\bar{\Sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\mathbf{R}_{\mu}}\left\langle\mathbf{r} \mid \phi_{m}^{\mu}\right\rangle\left(\Sigma_{m m^{\prime}}^{\mu}(i \omega)-V_{D C}^{\mu}\right)\left\langle\phi_{m^{\prime}}^{\mu} \mid \mathbf{r}^{\prime}\right\rangle$
3) Solve the Dyson Eq.: $\quad\left(-\nabla^{2}+V_{K S}+\bar{\Sigma}\right)\left|\psi_{\mathbf{k}, i \omega_{n}, i}\right\rangle=\left|\psi_{\mathbf{k}, i \omega_{n}, i}\right\rangle \varepsilon_{\mathbf{k}, i \omega_{n}, i}^{D M F T}$

$$
\operatorname{or}\left(\varepsilon_{\mathbf{k}, i_{1}}^{D F T} \delta_{i_{1}, i_{2}}+\left\langle\psi_{\mathbf{k}, i_{1}}^{D F T}\right| \bar{\Sigma}\left|\psi_{\mathbf{k}, i_{2}}^{D F T}\right\rangle\right)\left\langle\psi_{\mathbf{k}, i_{2}}^{D T} \mid \psi_{\mathbf{k}, i \omega, i}\right\rangle=\left\langle\psi_{\mathbf{k}, i_{1}}^{D F T} \mid \psi_{\mathbf{k}, i \omega_{n}, i}\right\rangle \varepsilon_{\mathbf{k}, i \omega_{n}, i}^{D M F T}
$$

4) Determine the chemical potential: $\quad N_{v a l}=T \sum_{i \omega_{n}, \mathbf{k}, i} \frac{1}{i \omega+\mu-\varepsilon_{\mathbf{k}, i \omega_{n}, i}}$
5) Calculate DMFT electronic charge in space:

$$
\rho_{v a l}^{D M F T}(\mathbf{r})=\sum_{\mathbf{k}, i j} \psi_{\mathbf{k}, i}^{D F T}(\mathbf{r}) T \sum_{i \omega_{n}}\left[\left(i \omega+\mu-\varepsilon_{\mathbf{k}}^{D F T}-\bar{\Sigma}_{\mathbf{k}}(\omega)\right)^{-1}\right]_{i j} \psi_{\mathbf{k}, j}^{D F T^{*}}(\mathbf{r})
$$

6) Calculate DMFT free energy and forces on all atoms

http://summer2016.ccs.usherbrooke.ca/dmft/ Initialize the DMFT calculation

\$> ssh -X stud[..]@summer2016.ccs.usherbrooke.edu
\$> qsub -I -X
start interactive session
\$> module load edmftf
\$> export OMP_NUM_THREADS=2
load the module
\$> cd MnO
\$> init_dmft.py
this sets up DMFT projector

To answer the questions, look at:
http://hauleweb.rutgers.edu/tutorials/

Continue... initialize the DMFT calculation

\$> mkdir ../DMFT_MnO; cd ../DMFT_MnO \$> dmft_copy.py ../MnO \$> x kgen -f MnO 2000
\$> cp \$RESULT/MnO/params.dat .
get params file $\$>$ szero.py -e 38.22 -T 0.025853 create blank sigma ($T=1 /$ beta=1/38.68) \$> cp \$RESULT/submit2.sh .
\$> exit
\$> cd DMFT_MnO
\$> qsub submit2.sh

```
obtain submission script
stop interactive session
return to the current dir
submit to the queue
```


Monitor the job

\$> less dmft_info.out \$ > less ':log'
\$ > plot -u1:3,1:5-x:10 MnO.dlt1
check the master log file
check execution log
plot hybridization function \$ > plot -x:20-g -u1:3,1:5 imp.0/Gf.out.?.1 plot the DMFT output G
\$> less info.iterate
\$> plot -g -u1:9,1:10 info.iterate \$> grep ‘:CHARGE’ MnO.dayfile
see current energy/mu/Vdc/...
plot lattice \& impurity occupancy how well is charge converged

```
it might take too much time to converge...
```

After some time you should kill your job, and
continue with postprocessing

To kill your job, type

$$
\begin{aligned}
& \text { \$> qstat } \\
& \text { \$> qdel <Job ID> }
\end{aligned}
$$

Postprocessing maxent

\$> mkdir maxent; cd maxent
new directory
\$> saverage.py \$RESULT/MnO/sig.inp.1?.1
average over a few MC steps \$> cp \$RESULT/MnO/maxent/maxent_params.dat . parameters for maxent \$> qsub -I -X
interactive session
\$ > module load edmftf \$> cd DMFT_MnO/maxent \$ > maxent_run.py sig.inpx go back to the new dir run maxent
plot Sigma on real axis \$> plot -u1:3,1:5 Sig.out
you should get:

Postprocessing DOS

\$> mkdir ../onreal; cd ../onreal \$ > dmft_copy.py \$RESULT/MnO
\$> cp ../maxent/Sig.out sig.ip

new directory

copy converged DMFT outputs

edit the second line of MnO.indmfl file and change the flag matsubara to 0 $00.0250 .025200-3.0000001 .000000$ \# matsubara,..

\$> x lapw0 -f MnO
\$> x lapw1 -f MnO
\$> x_dmft.py dmft1
\$ $>$ plot -x-10:10 -uall MnO.cdos
\$> plot -x-10:10 -u1:3,1:5 MnO.gc1

```
recompute KS potential
recompute KS eigensystem
compute DOS and G on real axis
```

plots partial DOS
plots local G (omega)

Post-processing band structure

\$> cp \$RESULT/MnO/onreal/MnO.klist_band .
\$> x lapw1 -f MnO -band

```
KS eigvals on k-path
```

edit the second line of MnO.indmfl file and change omega_min, omega_max to -6 6

$$
00.0250 .025200-6.0000006 .000000 \text { \# matsubara,.. }
$$

\$> x_dmft.py dmftp
\$> cp \$RESULT/MnO/EF.dat .
\$> wakplot.py 0.02

```
compute dmft eigvals
get final EF
plot spectral function
```


FeSe

Repeat all above steps for F FeSe reading the tutorial at:
http://hauleweb.rutgers.edu/tutorials/ click: Tutorial 2 on FeSe

Thank you!

