
DMFT-Wien2k Manual

Kristjan Haule
Department of Physics, Rutgers University, Piscataway, NJ 08854, USA

(Dated: December 26, 2009)

PACS numbers: 71.27.+a,71.30.+h

I. INSTALATION

The program consists of many independent programs,
which are written in C++, fortran90, and Python.

Here are some important steps to instal the package

• Edit the file Makefile.in to set the path to compil-
ers, compiler options, and libraries on your system.
You will need

– intel mkl library

– intel fortran compiler

– gnu C++ compiler

– Python with numpy and scipy

– Python CXX package

• type make

• set an environment variable WIEN_DMFT_ROOT to
point to the directory you plan to install the code

• type make install

Note: When installing numpy on a linux distribution, make

sure to have gcc in the environment variable CC=gcc and

CXX=g++, because otherwise linux will install f2py compiled

with icc and icpc, which does NOT work at all (the options

sent to icc are wrong at compilation time of f2py).

II. SHORT INTRO TO RUNNING
DMFT-WIEN2K CODE

The package consists of many independent modules,
which are written in C++, fortran90, and Python.

The highest level scripts are written in Python (”.py”
files). You can always get help on python script by run-
ning the script with the argument ”-h” or ”−−help”.

The most important steps of the LDA+DMFT execu-
tions are:

• initialization: After LDA is converged with the
Wien2K package, one should run
> init_dmft.py
and follow the instructions. The script will create
two input files: case.indmfl and case.indmfi . The
first contains information of how a local self-energy
can be added to the Kohn-Sham potential. The
second connects the local self-energy with the out-
put self-energy of the impurity solvers.

• preparation: Prepare additional input files

– params.dat
The file must contains information for the im-
purity solver, number of self-consistent steps,
etc.

– sig.inp
Contains starting guess for the input self-
energy. Here zero dynamic self-energy is usu-
aly a good starting point. This can be gener-
ated by
> szero.py -e Edc
”Edc” should be a number close to U(n −
1/2), where n is expected impurity occupa-
tion. This creates a good guess for double-
couting and Σ(∞), but ultimately a good
guess for the impurity levels.
The frequency mesh for the self-energy is very
important. It is generated in the following
way:
If you have a good self-energy from some other
run, you can copy it to the working directory,
and the script will take the mesh from current
sig.inp. If sig.inp does not exist, you should
specify the following arguments to the szero.py
script

∗ -n int : Number of frequency points
∗ -T float : Temperature for the imaginary

axis mesh
∗ -L float : cuttof energy on the real axis

The real-axis mesh generated in this way is
not efficient, and one should rather gener-
atea more efficient ”tan” mesh with alterna-
tive script, and copy it to sig.inp.

– Sigma.000
This file is needed only on real axis. It is a
guess for the self-energy of pseudoparticles. If
you have no experience in generating this file,
you should take it from some example run.
You only need the first column, which gives a
frequency for the self-energy.

• self-consistent run: By invoking
> run_dmft.py
the python script will produce self-consistent
LDA+DMFT solution.

Useful informtation is stored in the following log
files:

2

dmft_info.out – top-most information about the
LDA+DMFT run
case.dayfile – list of all executed steps and
current convergence.
dmft1_info.out – information about the dmft1
step
case.outputdmf1 – more information on dmft1
step from fortran routines.
dmft2_info.out – information about the dmft2
step
case.outputdmf2 – more information on dmft2
step from fortram routines.

The self-consistent calculation, performed by
(run_dmft.py) can also be performed by a few
steps, which can be invoked sequentially by the user.
These steps are

• LDA potential : Is computed by
> x lapw0

• LDA eigensystem : Is computed by
> x lapw1

• so-coupling : When needed, so-coupling ss added
by
> x lapwso

• self-energy split: Is invoked by
> ssplit.py

The self-enery for all atoms and all orbitals is stored
in sig.inp. The first two lines contain the double-
couting Edc, and Σ(∞). The columns correspond
to the dynamic part of the self-energy. Each cor-
related block (atom, l) needs an independent input
file in the dmft1 and dmft2 step. Even if two atoms
are equivalent, they need independent input self-
energy. For each such block, a file sig.inp[r]
is generated (where [r]is positive integer), which
contains Σ(ω)− Edc for each correlated block.

• dmft1 step : Can be invoked by
> x_dmft.py dmft1

Computes the local Green’s function and the
hybridization function. The ouput files are
case.cdos – density of states,
case.gc[r] – local green’s functios,
case.dlt[r] – hybridization function,
case.Eimp[r] – impurity levels,
case.outputdmf1 – logging information,

• Prepare impurity hybridization: Invoked by
> sjoin.py -m mixing-parameter
It produces hybridization function for all impu-
rity problems. dmft1 step produces hybridiza-
tion function and impurity levels for all corre-

lated blocks (case..dlt[r]). In DMFT, the num-
ber of impurity problems can be smaller than
the number of correlated atoms (either because
some atoms are equivalentm, or some atoms are
grouped together in clusters). From the hybridiza-
tion functions (case..dlt[r], case..Eimp[r]),
the impurity hybridization (imp.[r]/Delta.imp,
imp.[r]/Eimp.inp) are generated.

• Impurity solver : Solves the auxiliary impurity
problem. Currently supported impurity solvers are:

– CTQMC – continuous time quantum Monte
Carlo

– OCA – the one crossing approximation

– NCA – To invoke it, the mode should be
”OCA”, but the executable should be ”nca”.

• combine impurity self-energies : Invoked by
> sgather.py
It take the impurity self-energy, and creates a com-
mon file with self-energy. The impurity solvers pro-
duce the new self-energy in imp.[r]/sig.out. The
result is combined into a single file named sig.inp
.

• self-energy split: Invoked by
> ssplit.py
In the next step (dmft2) we want to use the new
self-energy just produced by the impurity solver.
Hence, we create sig.inp[r] again from single self-
energy file sig.inp, just created.

• dmft2 step : Recomputes the electronic charge
using LDA+DMFT self-energy. The output is
stored in
case.clmval – the new valence charge density
EF.dat – the new chemical potential
case.cdos3 – occupied part of the DOS (just for
debuging purposes.)
dmft2_info.out – some logging information
case .outputdmf2 – more logging information
from the fortram subroutines.
case scf2 – more information from the fortran.

• lcore : Computes LDA core density by invoking
> x lcore

• mixer : Produces the total electronic charge,
and mixes it with previous density by broyden-like
method. Invoked by:
> x mixer

3

