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Part I
Introduction

1 Electronic structure of crystal and Density Func-
tional Theory(DFT)

Density-functional theory in the Kohn-Sham formulation is the basic tool for

weakly interacting electronic systems and is widely used by the electronic struc-

ture community. We will review it using the effective action approach, which was

introduced in this context by Fukuda.

Choice of variables. The density of electrons ρ(r) is the central quantity of DFT

and it is used as a physical variable in derivation of DFT functional.

Construction of exact functional. To construct the DFT functional, we probe

the system with a time- dependent source field J(x).

This modifies the action of the system (9) as follows:

S′[J] = S +
∫

dxJ(x)ψ+(x) ψ(x).

The partition function Z becomes a functional of the auxiliary source field J,

The effective action for the density, i.e., the density functional,is obtained as

the Legendre transform of F with respect to ρ(x).

From this point forward, we restrict the source to be time independent be-

cause we will only be constructing the standard DFT. IF the time dependence

were retained, one could formulate time-dependent density-functional theory.

The density appears as the variational derivative of the free energy with respect
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to the source The constraining field in DFT. We demonstrate below that, in the

context of DFT, the constraining field is the sume of the well-known exchange-

correlation potential and the Hartree potential Vxc + VH, and we refer to this

quantity as Vint. This is the potential which must be added to the noninter-

acting Hamiltonian in order to yield the exact density of the full Hamiltonian.

Mathematically, Vint is a functional of the density which solves the equation

The Kohn-Sham equation gives rise to a reference system of noninteracting

particles, the so-called Kohn-Sham orbitals ψkj which produce the interacting

density

Here the Kohn-Sham potential is VKS = Vext + Vint, are the Kohn-Sham energy

bands and wave functions, k is a wave vector which runs over the first Brillouin

zone, j is the band index, and is the Fermi function.

Kohn-Sham Green’s function. Alternatively, the electron density can be ob-

tained with the help of the Kohn-Sham Green’s function, given by

where G0 is the noninteracting Green’s function,

and the density can then be computed from

The Kohn-Sham Green’s function is defined in the entire space, where Vint(r)

is adjusted such that the density of the system ρ(r) can be found from . It can

also be expressed in terms of the Kohn-Sham particles in the following way:

Kohn-Sham decomposition. Now we come to the problem of writing exact and

approximate expressions for the functional. The strategy consists in performing
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an expansion of the functional in powers of electron charge. The Kohn-Sham

decomposition consists of splitting the functional into the zeroth-order term and

the remainder,

This is equivalent to what Kohn and Sham did in their original work. In the

first temr, e2 = 0 only for electron-electron interactions, and not for the inter-

action of the electron and the external potential. The first term consists of the

kinetic energy of the Kohn-Sham particles and the external potential. The con-

straining field J0 is Vint since it generates the term that needs to be added to the

noninteracting action in order to get the exact density. Furthermore, functional

integration of Eq. gives and from Eq. it follows that

The remaining part ∆ΓDFT (ρ) is the interaction energy functional which is de-

composed into the Hartree and exchange-correlation energies,

ΦxcDFT [ρ] at zero temperature becomes the standard exchange correlation en-

ergy in DFT.

Kohn-Sham equations as saddle-point equations. The density functional

ΓDFT (ρ) can be regarded as a functional which is stationary in two variables Vint

and ρ. Extremization with respect to Vint leads to Eq. , while stationary with

respect to ρ gives Vint=δ∆Γ/δρ, or equivalently

where Vxc(r) is the exchange-correlation potential given by

Equations and along with Eqs and or, equivalently, Eqs and , from the system

of equations of the density- functional theory. It should be noted that the Kohn-
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Sham equations give the true minimum of ΓDFT (ρ), and not only the saddle point,

in contrast to spectral functional theories such as the BK method.

Exact representation for ΦxcDFT . The explicit form of the interaction functional

ΦxcDFT [ρ] is not available. However, it may be defined by a power series expansion

which can be constructed order by order using the inversion method. The latter

can be given, albeit complicated, a diagrammatic interpretation. Alternatively, an

expression involving integration by a coupling constant λe2 can be obtained using

the Harris-Jones formula. One considers ΦDFT [ρ, λ] at an arbitrary interaction λ

and expresses it as

Here the first term is simply KDFT [GKS] as given by Eq. which does not depend

on λ. The second part is the unknown functional ΦxcDFT [ρ]. The derivative with

respect to the coupling constant in Eq. is given by the average

where Πλ(x, x′) is the density-density correlation function at a given interac-

tion strength λ computed in the presence of a source which is λ dependent and

chosen so that the density of the system is ρ. Since , one obtains

This expression has been used to construct more accurate exchange correla-

tion functional.

Approximations. Since is not known explicitly some approximations are

needed. The LDA assumes,

where is the exchange-correlation energy of the uniform electron gas, which

is easily parametrized. Veff is given as an explicit function of the local density.
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In practice one frequently uses analytical formulas. The idea here is to fit a

functional form to quantum Monte Carlo(QMC) calculations. Gradient correc-

tions to the LDA have been worked out by Perdew and co-workers. They are also

frequently used in DFT calculations.

Evaluation of the total energy. At the saddle point, the density functional ΓDFT

delievers the total free energy of the system,

where the trace in the second term runs only over spatial coordinates and

not over imaginary time. If temperature goes to zero, the entropy contribution

vanishes and the total energy formula is recovered

Assessment of the approach From a conceptual point of view, the density-

functional approach is radically different from the Green’s-function theory (see

Sec. below). The Kohn-Sham equations and describe the Kohn-Sham quasipar-

ticles which are poles of GKS and are not rigorously identifiable with on-electron

excitations. This is very different from the Dyson equation which determines the

Green’s function G, which has poles at the observable one-electron excitations.

In principle the Kohn-Sham orbitals are a technical tool for generating the to-

tal energy. They are, however, not a necessary element of the approach as DFT

can be formulated without introducing the Kohn- Sham orbitals. In practice,

they are an excellent first step in perturbative calculations of the one-electron

Green’s function in powers of screened Coulomb interaction, as, e.g., the GW

method. Both the LDA and GW methods are very successful in many materials
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in which one can apply the standard model of solids. However, in correlated elec-

tron systems this is not always the case. Our view is that this situation cannot be

remedied by either using more complicated exchange-correlation functionals in

density-functional theory or adding a finite number of diagrams in perturbation

theory. As discussed above, the spectra of strongly correlated electron systems

have both correlated quasiparticle bands and Hubbard bands which have no

analog in one-electron theory.

The density-functional theory can also be formulated for model Hamiltonians,

the concept of density being replaced by the diagonal part of the density matrix

in a site representation. It was tested in the context of the Hubbard model by ,

and . (Kotliar et al., 2006)
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2 Strongly correlated systems and
Dynamical Mean Field Theory(DMFT)

2.1 Strongly correlated systems

What do we mean by a strongly correlated phenomenon? We can answer this

question from the perspective of electronic structure theory, where one-electron

excitations are well defined and represented as delta-function-like peaks show-

ing the locations of quasiparticles at the energy scale of the electronic spectral

functions. Strong correlations imply the breakdown of the effective one-particle

description: the wave function of the system becomes essentially many-body-

like, represented by combinations of Slater determinants, and the one-particle

Green’s functions no longer exhibit single-peaked features.

The development of methods for studying strongly correlated materials has

a long history in condensed matter physics. The efforts of the many-body com-

munity have traditionally focused on the solution of model Hamiltonians (usually

written for a given solid-state system on physical grounds) using techniques such

as diagrammatic methods, quantum Monte Carlo simulations, exact diagonaliza-

tion for finite-size clusters, density-matrix renormalization-group methods, and

so on. The development of LDA + U and self-interaction corrected (SIC) methods,

many-body perturbative approaches based on GW and its extensions, as well as

the time-dependent version of the density-functional theory, have been carried

out by the electronic structure community to address the problem of the strongly
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correlated materials. Some of the these techniques are already much more com-

plicated and time consuming compared to the standard LDA-based algorithms,

and therefore the real exploration of materials is frequently performed by sim-

plified versions utilizing approximations such as the plasmon-pole form for the

di-electric function, omitting the self-consistency within GW or assuming locality

of the GW self-energy.

To motivate the dynamical mean-field theory approach we recall the nature of

the one-electron (or one-particle) density of states of strongly correlated systems

may display both renormalized quasiparticles and atomiclike states simultane-

ously. To describe this method one needs a technique which is able to treat

quasiparticle bands and Hubbard bands on equal footing, and which is able to

interpolate between atomic and band limits. Dynamical mean- field theory is

the simplest approach which captures these features; it has been extensively

developed to study model Hamiltonians. Figure shows the development of the

spectrum while increasing the strength of Coulomb interaction U as obtained by

DMFT solution of the Hubbard model. It illustrates the necessity to go beyond

static mean-field treatments in situations when the on-site Hubbard U becomes

comparable with the bandwidth W.

Model Hamiltonian based DMFT methods have successfully described regimes

U�W & 1.However, to describe strongly correlated materials we need to incrop-

orate realistic electronic structure calculations. The low-temperature physics of
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systems near localization-delocalization crossover is nonuniversal, system spe-

cific, and sensitive to the lattice structure and orbital degeneracy which is unique

to each compound. We believe that incroporating this information into the many-

body treatment of this system is a neccessary first step before more general

lessons about strong-correlation phenomena can be drawn. In this respect, we

recall that DFT in its common approximations, such as LDA or GGA, brings a

system specific description into calculations. Despite the great success of DFT

for studying weakly correlated solids, it has not been able thus far to address

strongly correlated phenomena. So, we see that both density-functional-based

and many-body model Hamiltonian approaches are to a large extent complemen-

tary to each other and hence can be merged. One-electron Hamiltonians, which

are necessarily generated within density-functional approaches (i.e., the hop-

ping terms), can be used as input for more challenging many-body calucations.

This path was undertaken by Anisimov et al. who introduced the LDA+DMFT

method of electronic structure for strongly correlated systems and applied it to

the photoemmision spectrum of . Near the Mott transition, this system shows

a number of features incompatible with the one-electron description. The elec-

tronic structure of Fe has been shown to be in better agreement with experiment

within DMFT in comparison with LDA. The photoemission spectrum near the

Mott transition in has been studied, as well as issues connected to the finite-

temperature magnetism of Fe and Ni were explored.
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Despite these successful developments, we also emphasize a more ambitious

goal: to build a general method which treats all bands and all electrons on the

same footing, determines both hoppings and interactions internally using a fully

self-consistent procedure, and accesses both energetics and spectra of correlated

materials. These efforts have been undertaken in a series of papers which gave

us a functional description of the problem in analogy to the density- functional

theory, and its self-consistent implementation is illustrated on pluonium.

To summarize, there are two roads in approaching the problem of simulating

correlated materials properties, which we illustrate in Fig. Dynamical mean-field

theory has been useful in both instances. To describe these efforts in a language

understandable by both elctronic structure and many-body communities, and

to stress qualitative differences and great similarities between DMFT and LDA,

we start our review with a general many-body framework based on the effective

action approach to strongly correlated systems.

(Kotliar et al., 2006)
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2.2 DMFT formulism

DMFT is a mapping of a lattice problem onto an impurity problem. Therefore

at the heart of every DMFT calculation is the solution of the Anderson impurity

model.

The SDFT should be viewed as an exact theory whose manifestly local con-

straining field is an auxiliary mass operator introduced to reproduce the local

part of the Green’s function of the system, exactly like the Kohn-Sham potential

is an auxiliary operator introduced to reproduce the density of electrons in DFT.

However, to obtain practial results, we need practical approximations. The dy-

namical mean-field thoery can be thought of as an approximation to the exact

SDFT functional in the same spirit as LDA appears as an approximation to the

exact DFT functional.

The diagrammatic rules of the exact SDFT functional can be developed but

they are more complicated than in Baym-Kadanoff theory as discussed by . The

single-site DMFT approximation to this functional consists of taking to be a sum

of all graphs, constructed with as a vertex and as a propagator, which are two-

particle irreducible, namely, . This together with Eq. defines the DMFT approxi-

mation to the exact spectral density functional.

It is possible to arrive at this functional by summing up diagrams or using the

coupling constant integration trick with a coupling-dependent Green’s function

having the DMFT form, namely, with a local self-energy. This results in
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with in Eq. the self-energy of the Anderson impurity model. It is useful to

have a formulation of this DMFT funcational as a function of three variables,

namely, combining the hybridization with that atomic Green’s function to form

the Weiss function, one can obtain the DMFT equations from the stationary point

of a functional of , and the Weiss field:

One can eliminate and from Eq. using stationary conditions and recover a

functional of the Weiss field function only. This form of the functional, applied

to the Hubbard model, allowed the analytical determination of the nature of

the transition and the characterization of the zero-temperature critical points.

Alternatively eliminating and in favor of one obtains the DMFT approximation to

the self-energy functional discussed in.
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3 DFT+DMFT

3.1 Basics of DFT + DMFT

As stressed in this review, the ultimate goal of our research is a fully first-

principles electronic structure method which can treat strongly correlated sys-

tems (i.e., see). Because this ambitious methodology is still under development,

we continue to rely on the simplified approach which is DFT+DMFT. One of the

great merits of DFT+DMFT is that it is a nearly first-principles methos. The user

only needs to input the structure, the atomic species, and the interactions (i.e.,

U). The DFT+DMFT code suite is broken into three codes.

The first part is the DFT code, which is simply a modified version of LMTART.

It has nearly identical input files, with minor differences in how correlated or-

bitals are specified. Therefore the main inputs of this code are the unit cell and

the atomic species. The main role of this code is to generate and export the con-

verged DFT Hamiltonian matrix in a local basis for each k point. Therefore this

code essentially generates the parameters of the unperturbed Hamiltonian auto-

matically. This information is needed to construct the local Green’s function.

The second part is the code which implements the DMFT self-consistency

condition, which requires a choice of correlated orbital and double counting. This

code takes the Hamiltonian matrix and the self-energy as input, and provides the

bath function as output.

The third part is the various codes which solve the Anderson impurity model,
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and have been descibed in the first section. These codes take the bath func-

tion as input and provide the self-energy, which is used in the sel-consistency

condition in the preceding step.

These three pieces allow one to perform a non-self-consistent DFT+DMFT cal-

culation as follows. First, the DFT code is used to generate the local, orthogo-

nalized Hamiltonian matrix at each k point. Second, one starts with a guess for

the self-energy and uses the DMFT self-consistency condition code to find the

bath function. Third, the bath function is fed into the impurity solver produc-

ing a new self-energy. The second and third steps are then repeated until DMFT

self-consistency is achieved. This is considered a non-self-consistent DFT+DMFT

calculation. This process should be continued until both the total density and

the local Green’s function have converged.

One should note that the above pieces which compose the DFT+DMFT suite

are three separate codes. Therefore one must write a simple script to iterate the

above algorithm until self-consistency is reached (i.e., the self-energy converges

to within some tolerance). Additionally, the DFT portion of this code suite (i.e.,

the first part) can in principle be replaced by any DFT code as long as a local

basis set is generated.
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Figure 1: DFT loop

3.2 Flow charts
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Figure 2: DMFT loop
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Figure 3: DMFT1
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Figure 4: DMFT2
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