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namical Mean Field Theory

Band Structure Method

1 GW+DMFET

We will express the various types of approximations in language of Luttinger-Ward
functionals.

The exact Luttinger Ward functional takes the form

['[G] = Trlog G — Tr(XG) + @[G] (1)
where ®[G] is the sum of all possible two particle irreducible skeleton diagrams obtained
by the bare Coulomb interaction Vo (r — ') = ﬁ and the fully dressed propagator
G(r,r’).

We notice the following
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e \When bands are very wide, the kinetic energy is much bigger then the potential energy.
The perturbation theory in Coulomb interaction V- is converging rapidly and band
structure methods, such as LDA or GW are very accurate. Typical examples are noble
metals (Cu, Ag, Au).

e In narrow band materials, such as transition metals, transition metal oxides,
intermetallic f materials,... the potential energy is large compared to kinetic energy.
The band structure methods such as LDA or GW perform much worse. They

dramatically brake down in Mott insulators.
e |n correlated materials, all higher order Feynman graps are important.

e The higher order graps are very local (only Hartree-Fock graph is nonlocal in infinite D

when interaction is non-local), and could be summed by the DMFT method.

Let’s first explain the idea of GW+DMFT, because GW is diagrammatic method, and there
is no ambiguity in defining GW+DMFT. The P functionals of the two method, GW and
DMFT are
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The GW method sums all RPA-like diagrams, but the propagator is the fully interacting
Green's function G~ (r,1') = Gy ' (r,r’) — Saw (r,r’). Here
Gol=6(r—r")(w+p+ V2 —V.u(r) and Zgw(r,r’) is the correction due to the

Coulomb interaction. The GW diagrams are plotted in black in the above figure.

The DMFT method sums all local digrams, regarding of their topology or order. The number
of diagrams is increasing exponentially with order, and we can not plot them even at modest
orders. All these diagrams are large in correlated materials. Since the high order diagrams
are much more local then the diagrams at low orders, it makes sense to combine the two
methods GW and DMFT into GW+DMFT. The Luttinger Ward functional is

Powipmrr = Pow (G(r,v") + Pprrr (Groe) — Paw (Gioe) (2)

Becase the GW-type of the diagrams appear in both GW and DMFT the local GW diagrams
need to be subtracted.

We have thus defined the GW+DMFT approximation:

[[G(r,r")] = Trlog G — Tr(2G) + aw [G(r,1")] + paprrr(Gioc] — Pow[Gloc)-
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The functional is stationarly and thus we have

o(P P — ¢
> = (Pow + ?é\;FT po) = XGwW + XDMFT — 2DC (4)

where X p¢ is the local-GW self-energy. It is the sum of all GW diagrams where
propagator is G ...

We still did not define what is (G, and what is U. There is no unique definition of these
two quantities. However, physical motivation guides us to constract a sphere around each
atom with active d or f orbital (usually called Muffin Thin sphere), and we use a projector to

all angular momentum components inside the sphere
P(rr';tLL) = Y5, (#,)0(re — r'1) Y (x/). (5)
We then have
Gloc(t, LL") = /P(rr’; tLL")G(r,r")drdr’ (6)
This is the local Green’s function used in the above functional equations.

It turns out that we can not actually use the above defined P(rr’;tL L") because it leads
to non-causal DMFT eugations. In practice, we construct a separable projector, which is
very close to the projector defined above, but gives causal DMFT equations (see
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arXiv:0907.0195 for details).

The quantity U is more difficult. We should use the screened Coulomb repulsion and not
bare repulsion. This is because the wide bands, not considered in DMFT, screen the
interaction very efficiently. For example, in atom U is of the order of 20 eV, while in the solid
it is around 5 — 10 eV. How to account for this screening.

We first notice that U is the bare interaction with respect to orbitals included in the DMFT,
but it is screened by the orbitals excluded in DMFT.

The quantity U is similar to the Weiss field on the one particle level. The Weiss field GYis
the bare propagator on the level of the impurity (local), but it includes non-local processes
through the full Green’s function.

Hence, it is a good idea to referesh our memory on the local bare propagator on the one
particle level, to understand the procedure on the two particle level.

On the one particle level, we have G(r,r’), Go(r,r’), Gjoc. But none of them is the bare
local propagator. We derived the DMFT equations in the previous lecture, and showed that
Goc should be identified with Gy, and 235, should be identified with >J;,,,,,. Then the
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solution of the impurity problem, which delivers Zimp, also gives us 2.;,.. We thus have

Gloc = Gimp — (gOZ_Tip — Eloc)_1 (7)

The bare local propagator GY is thus a different guantity then the non-interacting Go(r, r’).

Gol(r,r') = 6(r—1')(w+ pu+ V2 = Vo(r)) (8)
G* = Gl Siee ©)
Gloc = /Ploc(rr’)G(r, r’)drdr’ (10)
G lr,r) = Gi'(r,y)-% (11)
Rather then using the bare interaction Vo (rr’) = |r_—1r,| we can rewrite the fermionic

problem in terms of the fully dressed (or screened) interaction W(rr’) and fully dressed

Green’s function G (rr’).

On the example of GW diagrams, the reformulated problem is
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G(r,r")
e = O O
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Clearly, the screened interaction also obeys the Dyson equation
Wt rer') = V- rer') — O(rr) (12)

where II(rr’) is the polarizability. In GW, this is just the bubble.

We thus have a set of parallel quantities on the one and the two particle level

name one-particle two particle
bare propagator Go(rr’) Ve(rr') = ﬁ
fully dressed propagator G(rr’) W(rr’)
self-energy/polarizability Y (rr’) [I(rr’)
local propagator Gloc Wioe
Weiss-field/screened interaction GY U

On the two particle level, U is like the bare local propagator GY on the one particle level,
and G(r, r") on the one particle level is like the bare Coulomb interaction 1/|r — r’| on

the two particle level.
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The DMFT equations on the two particle level (sometimes called extended-DMFT) are
U_l — Wl_l + 1_Iloc (13)

Wiocr Liibaly = /P(rr, tLy L)W (v’ )P (x'y'  t L3 Lo)drdr’  (14)
and II is local polarizability, which is equal to

HZOCE4L1 L3 Lo (7-) — GZOCE4L3 (T)Gloczl Lo (_T) (15)

in GW approximation. In GW+DMFT, it should be computed self-consistently from the

DMFT charge susceptibility (including vertex corrections).

We have thus fully defined the GW+DMFT equations. These equations are very
challenging to implement. To date, we do not have a working code to fully carry out the set

of equations specified above.
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2 LDA+DMFT

Since LDA is such an accurate and fast method for weakly correlated materials, it is natural
to use LDA instead of GW in the above equations, and use (almost) the same set of

equations.

G| =TrIn(G) — Tr[XG) 4+ Prpalp] + Pormrr|Gioc] — ®oc|Gioc]  (16)

where TT runs over all space (orbitals,momenta) and time (frequency). The quantities

apprearing in the above functional are

G lr,r')=|w+pu+ V= Veue(r)] 6(r — ') — X(r, 1) (17)
rpalpl = Pulp] + Puclp) (18)
Y(r,r") = [Vy(r) + Vie(r)]0(r — ') + [Epyrr(r, ') — Epcd(r — r()b)
p = Tr[G]

where IT is trace over time only (not space), V.. is the potentials due to ions, Vi, Vx o
are the Hartree, and exchange-correlation potential, respectively. ® s FT[GZOC] is the
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sum of all local two particle irreducible skeleton diagrams constructed from (&, and the
Coulomb repulsion U (screened by orbitals not contained in (G;,.), and ® p¢ is the double
counting functional.

The only quantity which is not very well defined in LDA+DMFT is the double-counting
functional ® p and Epc = d®Ppc/on.

In GW+DMFT, the double-counting is clear: all diagrams counted twice are the local GW
diagrams. Since LDA is not a diagrammatic technique, we can not derive a double-counting
correction.

We also need the Coulomb repulsion U, which one could compute from so called
"constraint LDA”. In practice, "constrained LDA” underestimates the "bare local interaction
U
We thus carry out a GW calculation, where U is computed from the above defined method,
namely, by computing

U_l — 1 + 1_[loc- (20)

loc
In this GW calculation, we also get the occupancy of the correlated orbital 4. We can
require that the LD A + DM F'T" must have the same occupancy of the correlated orbital

as GW has. This uniquply determines the double r‘nunting
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In practice, it turns out that we can use a shortcut. In many materials the following "atomic
formula” for the double counting is remarkable occurate

EDC:U(nd—1/2)—J/2(nd—1) (21)
which is the derivative of the atomic formula for the interacting energy
—1 — 2
By = Und(n; ) _ Jnd(ni ) (22)

where U and J are two parameters that quite accurate parametrize the Coulomb repulsion.

Namely, the following parametrization is due to Slater, and he showed that when the
orbitals are spherically symetric, one has

4 "
Um4m3m2m1 — Z 2%k + 1F«E€l} <}/2m4|Yk mM4—m1 |}/2m1> X <Yim3|Ykm2—m3D/lm2> (23)
k

where F'¥ are Slater integrals. For d materials, we have only F© = U, F'? and F'*, which

are nonzero. It turns out that there is almost a fixed ratio between the two Slater integrals,

namely, Fo = (14/1.625) J and, Fy = (8.75/1.625) .J. Hence, we usualy work with
J, rather then /2, and 4.

letermine these Slater infearals from the full o of i on by i
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following projection

1 vy
F{kl} — Z Mk 2]€—|— 1<Ylm4|Yk m4—m1|Y2m1>
ma,m2,Mm3,Mmy ’
X Ugmy,mgml <H??’L3 |Yk*m2—m3 |Yim2> (24)

Here Ao = (20 + 1), Nj—2 k=1 = 5(2/7)% and Nj—2 =2 = (10/21).

We have just defined the LDA+DMFT method. Provided we have an accurate impurity
solver for d and/or f orbitals, we can carry out the above defined set of equations. This set

of equations are nowadays quite routinely solved for many correlated materials.

3 Wien2K+DMFT schemes
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dmft1

DFT
Y(w),8ki ljZfT-»Glocal,A(w),E'imp

projector:  P(rr',7LL") ~ Y1 (¢,)d(r, — r_)Y7 (t))

self-energy v . . .. - e
in KS base: Yk,ij (W) = LZ; Pkf(ﬁ”TLQLl)(ZLle(W) Eg.)

DMFT self-consistency condition:
. .. . = —1
GIOCQZLL’ — Z PkT(Z]? LLI) [(zw + H— €k — Zk(w)) :|
kij
1

iw—FET  — ¥ (w) — AT(w)

imp

e

LL'
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1

Kt — Ekw, i

The chemical potential:  Nvai = TZ T

W 52

Valence charge density:

DMFT
pva,l

k.17

Wa,

total energy contribution:  Euience = Tr((=V* 4 Vis)p

val

DMFET

)

dmft2
E(w),é‘fifT, lch,JZFT-» '.;DCLE;JFT(I'), Evalence
projector:  P(rr',7LL") ~ Y1 (¢,)d(r, — r_)Y7 (t))
self-energy v . .. - e
in KS base: ] LZ; Pur(ji, Lo Lh) (X7, 1, (w) — Eg.)
DMFT eigenvalues: (—V* + Vics(r) + Tk (@) e, (t) = Siui Vi (r)

Z¢DFT XTZ [(iwnJr;L—Ek—ik(w))lL XwDFT( )
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Gloc = P (w—l—,u—|—V2 Vu _En loc_Elzloc)_1
Wie = Py (Vo+T%% 4 EL,.)
(P, O)(LL',7) = / drdr'Yr (£)0(r — )Yz (r)O(r, r')
(E1 O)(xr') = Y Yi(8,)6(rr — r}) YL (#,)O(LL', 7)
LL'T
Z/{_l — ngcl + 10 (25)
gO_1 — Gl_oi + Zloc (26)
Go(w) U(w) (27)
Gloc(w)a 2loc(‘*‘))a Wloc(w)y Hloc(w) (28)
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