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Reliable Padéanalytical continuation method based
on a high-accuracy symbolic computation algorithm
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~Received 24 August 1999!

We critique a Pade´ analytic continuation method whereby a rational polynomial function is fit to a set of
input points by means of a single matrix inversion. This procedure is accomplished to an extremely high
accuracy using a symbolic computation algorithm. As an example of this method in action, it is applied to the
problem of determining the spectral function of a single-particle thermal Green’s function known only at a
finite number of Matsubara frequencies with two example self energies drawn from theT-matrix theory of the
Hubbard model. We present a systematic analysis of the effects of error in the input points on the analytic
continuation, and this leads us to propose a procedure to test quantitatively the reliability of the resulting
continuation, thus eliminating the black-magic label frequently attached to this procedure.
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I. INTRODUCTION

Analytic continuation arises in the many-body proble
whenever real-time dynamics are to be recovered from a
sponse function calculated at nonzero temperatures in
Matsubara formalism. In that case, the function whose va
is known only at a discrete set of points on the imagin
axis must be continued to the real axis.

A general statement of the problem of interest in this
per is as follows: An analytic continuation of a functionf
defined on a subsetA,C is a function that coincides withf
on A and is analytic on a domain containingA. Usually, we

are interested in the analytic continuationf̄ with the largest

such domain, for thenf̄ is the greatest analytic extension
f to the complex plane. Since there exists no general

scription for findingf̄ from f, there is no choice but to reso
to approximate techniques. Currently, the state of the ‘‘a
is to interpolate between known points using fitting functio

capable of reproducing the analytic structure off̄ in the com-
plex plane.1 A serious difficulty is that the analytic structur

of f̄ is not usually knowna priori.
A widely used technique is the Pade´ approximant method

in which ratios of polynomials~or terminating continued
fractions! are used as fitting functions. Several Pade´ schemes
exist. The most common scheme, a recursive algori
called Thiele’s Reciprocal Difference Method,2 was used by
Vidberg and Serene3 in the context of the Eliashberg equ
tions. Yet, despite twenty years of widespread use, the P´
approximant method remains somewhat of an untested
proach in that there is still no reliable, quantitative meas
of the quality of a Pade´ result. The prevailing wisdom is tha
a Pade´ fit can be considered ‘‘good’’ when the output fun
tion is stable with respect to the addition of more inp
points. The results of this work make it clear that such
criterion is insufficient.

The various Pade´ schemes can be divided into two broa
PRB 610163-1829/2000/61~8!/5147~11!/$15.00
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classes:~i! those that return the value of the continued fun
tion point by point in the complex plane@ f (A),z#° f̄ (z) and
~ii ! those that yield the function itselff (A)° f̄ by returning
the polynomial~or continued fraction! coefficients. Thiele’s
method is class~i!, as are most numerical methods. In th
paper we present a robust Pade´ scheme that is class~ii ! and
propose a goodness-of-fit criterion based on the converge
of the polynomial coefficients to allowed values. One adva
tage of our approach is that we formulate the problem a
matrix equation, allowing us to make use of existing, high
efficient routines for matrix inversion. In contrast, a naive
implemented recursion algorithm can lead to a severe pro
gation of error since repeated operations are performed
terms of very different orders of magnitude.

Our paper is organized as follows. In the next section
review the formal aspects of thermal Green’s functions
establish the definitions of the various functions that en
into this problem. In Sec. III, we present the details of t
Padéform that we will use, and state the algorithm that w
use to solve for the Pade´ coefficients. This leads to the con
sideration of the accuracy required for such a calculati
thus necessitating the use of a high-accuracy symbolic c
putation algorithm. This is presented in Sec. IV, and then
display our numerical results for relevant test functions,
cluding the statistical test that allows us to conclude whet
or not a given analytic continuation is accurate. Finally,
Sec. V we present our conclusions.

II. GREEN’S FUNCTION FORMALISM

First, we introduce the components of theories based
thermal Green’s functions to establish the definitions of
various functions that enter into this problem.

The one-particle propagator or Green’s function can
formulated using real or imaginary time operators. In re
time, the retarded Green’s function

GR~ t !52 i ^$c~ i t !,c†~0!%&u~ t ! ~1!
5147 ©2000 The American Physical Society
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describes how the system responds when a particle is a
at time zero and removed at timet. Its imaginary-time coun-
terpart, the thermal Green’s function

G~t!52^T@c~t!c†~0!#&, ~2!

is not so clearly physically motivated. Its main advantag
are its mathematical elegance and computational ease.
ther, since it is defined in terms of the time-ordering opera
T, G(t) admits a diagrammatic expansion via Wick’s the
rem. Moreover, whereas the retarded Green’s functionGR(t)
is aperiodic int ~it has a lone discontinuity att50), the
temperature Green’s function is periodic int with period
2b.

The two Green’s functions have Fourier representatio
the first a Fourier transform

GR~ t !5
1

2pE2`

`

dv e2 ivtGR~v! ~3!

and the second, as a consequence of its periodicity, a Fo
series

G~t!5
1

b (
oddm

e2 impt/bGm ~4!

5
1

b (
vn

e2 ivntG~vn!, ~5!

which, in Eq.~5!, we have recast as a sum over the Mats
ara frequencies$vn5(2n21)p/b:nPZ% of some new Fou-
rier componentG(vn).

The formal connection between the real- and imagina
time formalisms is the following: There exists a unique fun
tion Ḡ:C°C with asymptotic form

Ḡ~z!5~1/z!@11O~1!/Im z#, ~6!

which takes on the values of the Fourier components of
temperature Green’s function at Matsubara points on
imaginary axisḠ( ivn)5G(vn) and gives the Fourier trans
form of the retarded Green’s function just above the real a
Ḡ(v1 i01)5GR(v). That is, Eqs.~3! and ~5! can be writ-
ten as

GR~ t !5
1

2pE2`

`

dv e2 ivtḠ~v1 i01! ~7!

and

G~t!5
1

b (
vn

e2 ivntḠ~ ivn!. ~8!

Clearly, all the information one can potentially extract fro
these functions is contained inḠ.

The functionḠ has several interesting properties. First
is analytic everywhere in the complex plane with the exc
tion of the real axis; this is a causality requirement. Seco
the value ofḠ in the upper and lower half planes is relat
by Ḡ(z* )5Ḡ(z)* , which is a statement of the time revers
symmetry between the retarded and advanced Green’s f
tions. Its immediate consequence is that the imaginary
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of Ḡ may be discontinuous across the real axis. It also
plies that we need only know the function in either the upp
or the lower half plane since the other is a conjugated refl
tion of the first. Third,Ḡ can be written as a Stieltjes/Hilbe
transform

Ḡ~z!5E
2`

`

dv
A~v!

z2v
, ~9!

where the spectral function, given by the magnitude of
discontinuity inḠ across the real axis, viz.,

A~v!52
1

p
Im GR~v!

52
1

2p i
@Ḡ~v1 i01!2Ḡ~v2 i01!#, ~10!

is non-negative and normalized to unity

A~v!>0, E
2`

`

dv A~v!51. ~11!

Typically, we are working in the Matsubara formalis
and we calculateG(vn) from its self-energy@via G(vn)21

5 ivn2j2S(vn)#, which is in turn calculated from an ap
proximate theory based on, e.g., a diagrammatic expan
of the propagator. From here, the route to real time dynam
is somewhat circuitous:

G~vn! 
1

Ḡ~z! 
2

GR~v! 
3

GR~ t !. ~12!

~1! The first step is to analytically continue from the Fouri
components of the temperature Green’s function to const
Ḡ. That this is possible, in principle, provided we kno
G(vn)5Ḡ( ivn) for an infinite set of points including the
point at infinity, was proved by Baym and Mermin.4 ~2! Sup-
posing that the analytic continuation to the upper half pla
can be found, we merely evaluate it along the real axis~set-
ting z5v1 i01) to getGR(v). ~3! A Fourier transform then
recovers the real-time response function.

In practice, however, we do not know the values
G(vn) at an infinite number of points. Moreover, even if w
did, the theorem of Baym and Mermin shows only the ex
tence of a functionḠ. There is no general method to perfor
the analytic continuation—hence the need for a proced
such as the Pade´.

III. PADÉ APPROXIMANTS

The Pade´ method is based on the assumption thatḠ can
be written as a rational polynomial or terminating continu
fraction. Since theories are most commonly specified b
choice of self energy, the continued fraction form turns o
to be the more useful, at least for investigating questions
mathematical nature~e.g., analytic structure!. In particular,
we shall find it helpful to considerḠ ~in the upper half
plane! a continued fraction of Jacobi form5,6 ~J-frac!. That is,
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PRB 61 5149RELIABLE PADÉ ANALYTICAL CONTINUATION . . .
Ḡ~z!5Ḡ(r 11)~z!5
l0

2

z2e02

l1
2

z2e12
•••

l r
2

z2er
~13!

5
1

z2j2S̄ (r )~z!
, ~14!

where theln anden are complex constants. By compariso
with Dyson’s equation, Eq.~14!, we make the identification
l0

251 and e05j, wherej is just the free particle energ
measured with respect to the chemical potential.7 Then, we
find that S̄ (r )(z) is itself a continued fraction

S̄ (r )~z!5
l1

2

z2e12

l2
2

z2e22
•••

l r
2

z2er
. ~15!

The justification for this continued fraction form is a the
rem due to Wall and Wetzel8 which assures us that a positiv
definite J-frac has a spectral representation with n
negative, integrable spectral weight and that it is analytic
the upper half complex plane—all the properties we knowḠ
must have to be physically reasonable. By positive defin
J-frac we mean a continued fraction in the form of Eq.~13!
satisfying Imen<0 and for which there exists a sequence
real numbersg0 ,g1 , . . . (0<gn<1) such that

~ Im ln!25~ Im en21!~ Im en!~12gn21!gn . ~16!

There are two special cases worth mentioning. If theln
anden are all real then the J-frac is positive definite and c
be cast as a sum of simple poles5

(
n51

r
Rn

z2En
~17!

with real, distinct energiesEn and positive residuesRn.0.
The J-frac is also positive definite if theln are real and none
of the en sits in the upper half complex plane@Eq. ~16! is
satisfied by setting allgn50 or 1#, in which case the function
is characterized by simple poles resting on or below the
axis. In the general case, all the continued fraction coe
cients have the potential to be complex, with the exception
l0

251, e05j, andl1
2. Sincee05j has no imaginary part

Eq. ~16! implies that the coefficientl1
2 must always be rea

and positive.
It is clear that by observing the values of theln , en

coefficients, one can learn a great deal about the ana
properties ofḠ(r 11) . For example, if someen has a positive
imaginary part~and nolm50 for m,n) then Ḡ(r 11) may
have a pole in the upper half plane—such a function wo
be noncausal and have negative spectral weight.~In fact, it is
through such considerations that we are led to propos
method for testing the accuracy of a given analytic conti
ation via a Pade´.!

Nonetheless, despite the usefulness of the continued
tion form, for computational purposes it is actually mu
easier to work with rational polynomials. Conveniently, e
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ery terminating continued fraction is equivalent to a ration
polynomial. For instance, a J-frac withr stories, Eq.~15! say,
can be written as the ratio

S̄ (r )~z!5
P(r )~z!

Q(r )~z!
~18!

of two polynomialsP,Q defined recursively by the formula

P(n11)5~z2en!P(n)~z!2ln
2P(n21)~z! ~19a!

Q(n11)5~z2en!Q(n)~z!2ln
2Q(n21)~z! ~19b!

~for n51,2,3, . . . ) with base cases

P(0)50, P(1)5l1
2 ~20a!

Q(0)51, Q(1)5z2e1 . ~20b!

Writing out the leading order terms ofP andQ

P(r )~z!5l1
2zr 212l1

2~e21e31•••1er !z
r 221•••

~21a!

Q(r )~z!5zr2~e11e21•••1er !z
r 211••• ~21b!

makes it clear that the polynomialP is of order r 21 in z
while the polynomialQ is of orderr. $Accordingly, one re-
fers to S̄ (r ) in Eq. ~18! as a@r 21/r # rational polynomial.%
Moreover, it suggests that we write the self energy explic
as a rational polynomial of the form

S̄ (r )~z!5
p11p2z1•••1prz

r 21

q11q2z1•••1qrz
r 211zr

. ~22!

It is straightforward to relate the old and new coefficients
one another via Eqs.~19! and ~20!: e.g., l1

25pr , e1
5pr 21 /pr2qr , etc.

The coefficientspn , qn can be determined by specifyin
the value ofS̄ (r ) at 2r points,viz., by solving the set of 2r
linear equations9

$S̄ (r )~ ivn!5S~vn!%. ~23!

If we define the column vectors

Fp

qG53
p1

A

pr

q1

A

qr

4 and s̃5F s1~ iv1!r

s2~ iv2!r

A

s2r~ iv2r !
r

G , ~24!

wheresn5S(vn) are the known values of the self energy
2r Matsubara frequencies, and a matrix
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X5F 1 iv1 ••• ~ iv1!r 21 2s1 ••• 2s1~ iv1!r 21

1 iv2 ••• ~ iv2!r 21 2s2 ••• 2s2~ iv2!r 21

A A

1 iv2r ••• ~ iv2r !
r 21 2s2r ••• 2s2r~ iv2r !

r 21

G ~25!
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equivalent to the system of equations given by Eq.~23!, then
the entire process of analytic continuation is reduced t
single matrix inversion

Fp

qG5X21s̃, ~26!

which provides the polynomial coefficients necessary to c
struct

S̄ (r )~z!5
@1 z z2

••• zr 21#p

@1 z z2
••• zr 21#q1zr

. ~27!

What we propose is that, having determined thepn , qn
coefficients, we recover theln , en coefficients and then us
the criteria provided by Wall and Wetzel’s theorem to det
mine whether the matrix inversion produced aḠ(r 11) with
an acceptable analytic form. As a first step, we investig
what can be learned froml1

2, the first nontrivial J-frac coef-
ficient. l1

2 is equal to the sum of the residues of the poles
the self energy and as such it gives the high freque
asymptotic behavior of the self energy viaS̄ (r )(z);l1

2/z. A
necessary condition for positive definiteness is thatl1

2 be
real and positive. We shall see that the convergence of Iml1

2

to zero as a function of the numberr of poles in the Pade´
fitting function can provide information on the quality of th
fit and on the analytic structure of the true continuationḠ.

IV. NUMERICAL RESULTS

The procedure we have outlined in Sec. III is a spec
ization of the following general Pade´ procedure—such con
siderations are central to our statistical analysis of the qua
of the fits provided by this method.

Given a functionf and a setA of 2r input points, we
suppose that we can approximate the analytic continuatiof̄

by a @r 21/r # rational polynomial f̄ (r ) , the coefficients of
which are determined by solving the linear system of eq
tions $ f̄ (r )(a)5 f (a):aPA%. This problem can be cast as
matrix inversion in which the kernelX has elements with
ratios as large as

z5u~maxAø f ~A!!r 21/minAø f ~A!u. ~28!

Thus, to reliably perform the inversion we need a numeri
range;z2, i.e., 2 log10z decimal digits of numerical preci
sion. This analysis is general in that no other Pade´ algorithm
can have less stringent precision requirements.
a

-

-

te

n
y

l-
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-

l

For the case of a self energyS, known at the first 2r
Matsubara frequencies above the real line on the imagin
axis, we have shown that the matrixX is given by Eq.~25!.
SinceS(vn);1/vn , the ratio of the largest to smallest term
in X is z5(v2r)

r5@(4r 21)pT# r , the square of which gives
an estimate of the amount of precision needed to inverX.
Here, that corresponds to

2r log10~4r 21!pT ~29!

decimal digits.
To achieve a sufficient level of precision for our nume

cal work, we implement the Pade´ algorithm using the sym-
bolic computation packageMAPLE. UnderMAPLE, expression
evaluation takes place in software and thereby transcend
limits imposed by hardware floating point. All computation
are performed in base ten to any desired level of precis
~we specified Digits:5 250;10!. Moreover,MAPLE is an ideal
environment for rapid prototyping since high level matr
data types and routines are available as primitives.

We begin by considering a test function of known an
lytic structure. The self energy11

S~kW ,vn!52
U2

bM (
QW

(
nn8

x0~QW ,nn8!G
0~QW 2kW ,nn82vn!

~30!

corresponds to the first ‘‘rung’’ of the ladder diagrams in t
T matrix12 approximation of the single-band Hubba
model13 ~characterized by a near-neighbor hopping integrt
and an on-site repulsion energyU). Here, G0 is the free
propagator

G0~kW ,vn!5
1

ivn2jkW
~31!

andx0 is the free pair susceptibility

x0~QW ,nn!5
1

bM (
kW

(
vn8

G0~kW ,vn8!G
0~QW 2kW ,nn2vn8!.

~32!

The frequency sums in Eqs.~30! and~32! can be performed
analytically, giving14

x0~QW ,nn!5
1

M (
kW

f @jkW#1 f @jQW 2kW#21

inn2jkW2jQW 2kW
~33!

and
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S~kW ,vn!5
U2

M2 (
QW ,kW8

~ f @jkW8#1 f @jQW 2kW8#21! f @jQW 2kW#2 f @jkW8# f @jQW 2kW8#

ivn1jQW 2kW2jkW82jQW 2kW8

. ~34!
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Since thejkW are real, the analytic continuation of the se
energy is a meromorphic function with a finite number
simple poles, all situated along the real axis. Calculated
two dimensions on an 838 (M564) lattice, itskW50 com-
ponent possessesr 0526 poles.~The number of poles is de
termined by counting the number of distinct elements in
set$jQW 2jkW82jQW 2kW8 :; kW8,QW %.!

For a particular set of parameters15—we use an interac
tion strengthuUu/t54, chemical potentialm/t522, and
temperatureT/t50.7—the test function, Eq.~30!, is calcu-
lated in two different ways for the Matsubara frequenc
$v1 ,v2 , . . . ,v2r%. First, it is calculated exactly, as pre
scribed by Eq.~34!, but with a small, random error,viz., each
value is multiplied by 11e with 21<e<1. Second, it is
calculated by truncating the Matsubara sum at an arbit
cutoff frequencynp@1 ~much larger than the relevant en
ergy scale of the problem! and then systematically addin
back the high-frequency contributions up to a given ord
That is,

2
1

b (
nn8

x0~QW ,nn8!G
0~QW 2kW ,nn82vn!

52
1

b (
unn8u<np

x0~QW ,nn8!G
0~QW 2kW ,nn82vn!

1 (
l 51

m21

x ( l )
0 ~QW !Q ( l 11)@ ivn1jQW 2kW#1O@1/~np!m#,

~35!

where

x ( l )
0 ~QW !5

1

M (
kW

~ f @jkW#1 f @jQW 2kW#21!~jkW1jQW 2kW !
l 21

~36!

are the coefficients of a Laurent expansion ofx0(QW ,nn) and
the Q ( l ) functions~defined in the Appendix! are constructed
using the symbolic manipulation capabilities ofMAPLE.

Now, we let the self-energy, evaluated at the firstr
Matsubara frequencies according to the two schemes
scribed above, serve as the input to the Pade´ procedure. The
resulting approximantS̄ (r ) yields a propagatorḠ(r 11)(kW ,z)
5@z2jkW2S̄ (r )(kW ,z)#21 with spectral functionA(r 11)(kW ,v)
52(1/p)Im Ḡ(r 11)(kW ,v1 i01). The spectral function de
rived from the Pade´ approximant is compared to that of th
exact function using the logarithmic measure

102F[E
2`

`

dx @A~kW ,x!2A(r 11)~kW ,x!#2

5
1

p2E2`

`

dx uIm@Ḡ~kW ,x1 ih!2Ḡ(r 11)~kW ,x1 ih!#u2.

~37!
f
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e

s

ry

r.

e-

In practice, we chooseh to be a small, but noninfinitesima
positive real quantity~we useh/t50.064), which has the
effect of introducing a slight artificial broadening to th
d-function peaks of the spectral function.

The results of this comparison~for thekW50 component of
the spectral function! are presented in Figs. 1~a! and 1~b!,
whereF is plotted as a function ofr for different values of
the random errorE52 log10e and the systematic errorE
52 log101/(np)m5mlog10np ~and thus a largerE corre-

FIG. 1. For various levels of~a! random and~b! systematic
error, characterized roughly as 102E ~see the text for more details!,
the quality of the Pade´ fit as measured byF @see Eq.~37!# is plotted
with respect to the number of poles in the Pade´ approximant~the

solid lines are a guide to the eye!. The kW50 self energy being
studied is that of Eq.~30! where the parameters of the attractiv
Hubbard model~with t being the hopping energy!, for an 838
square lattice, are a repulsive energyuUu/t54, a chemical potential
m/t522, and a temperatureT/t50.7. The vertical dashed line
indicates the number of poles (r 0526) in the true Green’s function
In plot ~a!, error bars~representing the standard deviation of t
data points over a set of initial random seeds! are smaller than the
symbols marking the data points and are not shown. In plot~b!, the
dotted line is the best linear fit through the maximum values ofF.
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FIG. 2. ThekW50 spectral function of the Pade´ approximant is compared to the exact spectral function for different levels of random
(102E) on the initial input points. The parameters of the Hamiltonian and the self-energy being studied are the same as those of
d
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sponds to a smaller error!. In each graph, a vertical dashe
line marks the exact number of poles (r 0526) in the true
self energy. The most distinctive feature of both graphs
that, at high accuracy~largeE), theF curves exhibit a large
step at the pointr 5r 0. In the random error case, theE
5120 curve jumps by four decades, and this represent
improvement in the Pade´ fit of nearly 40 orders of magni
tude. In the systematic error case, the result is even m
dramatic: theE5100 andE5120 curves jump by roughly
four and seven decades, respectively.

At these large accuracies, the only factor inhibiting t
success of the Pade´ approximants is the lack of a sufficien
number of poles to reproduce the analytic structure of
true function. The large jump observed in the largeE curves
marks the point,r 5r 0, at which the number of poles in th
Padéapproximant exactly matches the required number,
for this and largerr there is no difficulty in finding an excel
lent fit of the test function. In contrast, when the input poin
are known to relatively low accuracy, no such feature is
served, and instead theF curves pass smoothly throughr 0.
This makes clear that for self energies calculated to 20,
or even 60 decimal digits of accuracy, the level of error
the input points is still the main obstacle to a successful P´
fit.

The usual response to this situation is to increase the n
ber of Pade´ points in an attempt to overcome the intrins
error limitations~by making the system of equations mo
and more overcomplete!. However, whatever advantage th
is

an

re

e

d

-

0,

e

-

additional information brings to the Pade´ approximant is
soon outweighed by the accompanying complications: W
a rational polynomial of degree@r 21/r # is used to fit a func-
tion with r 0,r poles, r 2r 0 zeros of the numerator mus
coincide with an equal number of zeros in the denomina
in order to cancel the extraneous poles. Asr 2r 0 grows, it is
less and less likely that this cancellation will be complete
slight misplacement of zeros leads to ‘‘defects’’ in which t
function moves between 0 and̀ in a small neighborhood
Moreover, it cannot be predicted where these zero-zero p
will appear.17 For the purposes of calculating a spectral fun
tion, they are of little consequence provided that they
deep in the complex plane. However, when they are no
far removed from the real axis, they can distort the spec
function away from its proper shape. When they lie on
near the real axis, they can give rise to deep troughs of ne
tive spectral weight and other spurious, nonphysical featu

The deterioration of the Pade´ fit, as described above, i
evident in Figs. 1~a! and 1~b! in which many of theF curves
reach maxima at pointsr best.r 0 and then quickly begin to
fall off for larger r. Interestingly, this behavior is much mor
pronounced in the systematic error case where such max
occur for each curve. In the random error case, the cur
below some error threshold are essentially flat for allr.

The primary lesson that one should draw from these
sults is that the addition of Pade´ points well beyond the
required number is not a useful strategy for improving t
Padéfit. Unless the exact analytic continuation is alrea



b

cy
a

s o

ar
In

th
ui
e
m

o

ur

ac

th
wa
ls
y

ie
gi

n
in
e
r,

f

p

t

ce
th

t

nd
ail-
on

e
e,
but
n of
the

e

-
nd

f
as

r of
t-

es
ing
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known, there is no way to predict the value ofr best. We
believe that better results are achieved by fixing the num
of Padépoints at 2r 0 ~giving rise to a@r 021/r 0# rational
polynomial! and working towards increasing the accura
with which those input points are calculated. Even a sm
effort there can result in an improvement of several order
magnitude in the fit. What to try when one does not knowa
priori what r 0 is discussed later in this paper.

Now consider Figs. 2~a! through 2~d! in which the spec-
tral function of a Pade´ approximant with 26 poles~calculated
by specifying the value of the self energy at 52 Matsub
frequencies! is compared to the exact spectral function.
Fig. 2~a!, the accuracy of the input points is given byE
516 ~random error!, roughly the number of digits in a
double precision Fortran variable. Despite the fact that
overall energy scale is correct, the details of the fit are q
poor. Here, the effect of insufficient accuracy is to produc
washed out version of the spectral function, which co
pletely lacks fine structure. Even atE530 @Fig. 2~b!#, corre-
sponding to the number of digits available in the largest F
tran data type, the Pade´ inversion is only just beginning to
distinguish the main peaks of the spectral function. Fig
2~c! shows the result forE580 and Fig. 2~d! the result for
E5120. Notice that in Fig. 2~d!, the fit is near perfect: even
the smallest peaks have been reproduced faithfully.

In this example, withr 5r 0, the Pade´ approximant pro-
vides a remarkable fit to the true function whenever the
curacy of the input points is better thanE;110. The diffi-
culty in translating our success in this specific case to
general problem is that, in real applications, one has no
to judge when sufficient accuracy has been achieved. A
in most instances, the number of poles in the self energ
unknown.

In what follows, we hope to address these deficienc
We begin by defining a logarithmic measure of the ima
nary part of the J-frac coefficientl1

2:

102L[uIm l1
2u. ~38!

We argued in Sec. III thatl1
2 ought to be real and positive. I

a Pade´ calculation, however, it is real valued only to with
some small fraction, which characterizes the numerical s
sitivity of the matrix inversion. As we shall soon discove
the convergence of the imaginary part ofl1

2 to zero (L
→`) can be used~1! to determine when the threshold o
accuracy for an exact fit has been reached and~2! to infer the
value of r 0 if it is unknown.

In Figs. 3~a! and 3~b!, we plotL as a function ofr for the
random and systematic error cases. Over each plot is su
imposed a reference line given by Eq.~29!. What we observe
is a set ofL curves that initially follow the reference line bu
later fan out, spaced according to theirE values. Our claim is
that these curves provide the quantitative measure of suc
of the Pade´ approximant that has heretofore been lacking,
essential point being that the shape of the curves reveals
performance characteristics of the Pade´ inversion in the vari-
ous r regimes.
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When 0,r ,r 0, the accuracy of the Pade´ approximant is
matrix inversion dominated and the behavior ofL is gov-
erned byL;2r log10(4r 21)pT. In this regime, the Pade´
approximant has too few poles to fit the true function a
thus the matrix inversion must judiciously arrange the av
able poles~sometimes apportioning one pole to a regi
where there should be two or three! to give the best possible
fit. In the opposite limit,r @r 0, the accuracy of the Pad´
approximant is input-point error dominated. In this regim
there are more than enough poles to perform an exact fit,
the proper placement of those poles and the determinatio
their residues is hampered by the finite accuracy to which
input points are known. We find this reflected in theL
curves which, for larger, saturate at a valueL;E ~roughly!.

Most interesting, though, is the behavior ofL in the vi-
cinity of r 5r 0 where theL curves in Figs. 3~a! and 3~b! first
cross the reference line. In those plots, we see that thL
curves corresponding to small values ofE closely follow the
reference line@Eq. ~29!# until finite accuracy becomes a lim
iting factor. The curves then fall below the reference line a

FIG. 3. For various levels of~a! random and~b! systematic error
(102E), the parameterL is plotted with respect to the number o
poles in the Pade´ approximant. The parameters are the same
those of Fig. 1. The vertical dashed line indicates the numbe
poles (r 0526) in the true Green’s function. The solid line origina
ing in the lower left corner is given by 2r log10(4r 21)pT. In plot
~b!, the dotted line is the best linear fit through the maximum valu
of L. The parameters of the Hamiltonian and the self-energy be
studied are the same as those of Fig. 1.



e

av

re
ffi

s

a
pl

lly
sion
e

as

of

ing

5154 PRB 61K. S. D. BEACH, R. J. GOODING, AND F. MARSIGLIO
become more or less flat. AsE is increased, ther coordinate
at which a givenL curve first deviates from the referenc
line moves to the right until~for some accuracy,E0 say! it
coincides withr 0. Here, there is a sudden change in beh
ior: all L curves corresponding to accuraciesE.E0 cross
the reference line atr 5r 0. Such a crossing signals that the
are now both sufficient poles in the approximant and su

cient accuracy on the input points to fitS̄ more or less ex-
actly. We can verify this interpretation by appealing to Fig
1 and 2, which clearly show a large jump atr 0 for precisely
the same curves that demonstrate a crossing in Figs. 3~a! and
3~b!.

The results we have described are extremely general
do not depend on the choice of test function. For exam
we may replace Eq.~30! with the full non-self-consistentT-
matrix self energy
q
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S~kW ,vn!52
U2

bM (
QW

(
nn8

x0~QW ,nn8!G
0~QW 2kW ,nn82vn!

11Ux0~QW ,nn8!
.

~39!

Here, the frequency sums cannot be performed analytica16

and thus we do not have a closed form analytical expres
for the self energy.~Thus, this is more representative of th
usual situation in which the Pade´ method might be applied.!
In this case, we know only that its analytic continuation h
a finite number of poles along the real axis~although we are
able to predict analytically an upper bound for the number
poles!.

This self energy can be calculated to high accuracy us
the method of Eq.~35! with the x ( l )

0 (QW ) replaced by the
coefficients of the Laurent expansion ofx0(QW ,nn)/@1
1Ux0(QW ,nn)#. That is, x (1)

0 (QW )°x (1)
0 (QW ), x (2)

0 (QW )

°x (2)
0 (QW )2Ux (1)

0 (QW )2 and so on according to18
x (1)

inn
1

x (2)

~ inn!2
1

x (3)

~ inn!3
1•••

11UFx (1)

inn
1

x (2)

~ inn!2
1

x (3)

~ inn!3
1•••G 5

x (1)

inn
1

x (2)2Ux (1)
2

~ inn!2
1

x (3)22Ux (2)x (1)1U2x (1)
3

~ inn!3
1••• . ~40!
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The Pade´ approximant method can then be applied to E
~39! calculated in this way. We find that the resulting plot
L vs r is identical to that of Fig. 3~b! except that the crossin
of the reference line at high accuracy now occurs ar
5156. This allows us to deduce that the function hasr 0
5156 poles, significantly more than the 26 poles of Eq.~34!.
$This is a consequence of the lifting of degeneracy in eacQW
component brought about by the renormalization 1@1
1U(QW ,nn)#.% We also find that the approximant spectr
function compares well with increasing accuracy of the in
points to the numerically exact spectral functions as ca
lated~i! by a non-Pade´ method due to Marsiglioet al.19 ~this
non-Pade´ method is of limited application since it require
the self energy to have a very specific form, but for tho
cases where it is applicable, it can outperform the P´
method!, and~ii ! by an exact partial fraction decompositio
of the self energy20 that can be done to a very high accura
~say 10240 on all poles and residues!.

Finally, one interesting feature that could potentially
exploited is that for self-energy values calculated using
Q function expansion, the value ofr, which gives the maxi-
mum value ofL roughly tracksr best@cf. Figs. 1~b! and 3~b!#.

V. COMPUTER CODE

The implementation of the above-described method o
computer can be done in any computer language that all
for the user to achieve a high numerical accuracy. We h
.

l
t
-

e
e

e

a
s
e

usedMAPLEVR5.1, and for those researchers who want to u
this software we have provided an example computer p
gram~as aMAPLEVR5.1 worksheet! displaying our use of this
algorithm. These worksheets can be obtained via anonym
ftp.21 Also, updated versions of this code can be found
ftp://physics.queensu.ca/pub/rjg/research.

VI. CONCLUSIONS

The Pade´ procedure is very sensitive to the numeric
precision with which the matrix inversion is performed a
to the intrinsic error on the input points. Sufficient precisi
is difficult to achieve in traditional computer languages~e.g.,
C, Fortran! and so, in many instances, it may be necessar
make use of a symbolic computation package capable of
porting very large precision data types. Likewise, sufficie
accuracy is difficult to achieve without a sophisticated co
putational scheme~e.g., theQ-function expansion! that goes
beyond a simple truncation of the Matsubara frequency su
in the self energy. The required level of precision and ac
racy depends on the temperatureT, which controls the spac
ing of the Matsubara points, and on the pole countr 0.

An insufficient level of accuracy leads to an approxima
spectral function that lacks fine structural detail or, wor
one that exhibits spurious spikes or troughs of spec
weight. This poses a problem whenever we are intereste
the presence of a specific feature in the spectral func
~e.g., the onset of a normal-state pseudogap!. In that case, it
is essential to have confidence in the quality of the P´
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result. We must be convinced that the observed featur
robust and not merely a byproduct of insufficient accurac

We have argued that simply adding more Pade´ points can-
not compensate for too large an error on the input poi
While there is a small set ofr values for which an increase i
r improves the fit, there is no known criterion that indicat
when to stop adding points. Without already knowing t
exact result, one cannot distinguish between the reg
where additional points improve the fit (r ,r best) and the
regime where such points degrade it (r>r best). Instead, we
recommend the use of a Pade´ approximant function having
the same number of poles as the function to be fit. The e
number of poles, when it is not known, can be determin
from the crossing point in aL vs r plot. The crossing also
indicates that a sufficient level of numerical accuracy in
input points has been achieved.

There are several caveats to the procedure we have
lined. ~1! If the true Green’s function has a branch cut alo
the real axis arising from transcendental functions then nL
crossing will ever be observed, since a branch cut of t
kind can only be represented by an infinity of poles (r 0
5`). ~2! The self energy of the Green’s function we a
trying to reproduce must have the correct asymptotic fo
and must be analytic in, say, the upper half of the comp
plane; otherwise, the rational polynomial~or continued frac-
tion! form of the approximant cannot reproduce its analy
structure.~3! The Pade´ method is often used to model
function that is smooth in some region of interest~well away
from its poles! and such calculations are rarely perform
with more than machine accuracy. Our numerical analysi
the Pade´ inversion, with its prediction of extremely high
accuracy requirements, is not meant to invalidate these
sults. We have applied the Pade´ method to the particularly
difficult problem of reproducing the sharp peak structu
characteristic of a spectral function whose Green’s funct
has its poles along the real axis. In that case, the poles l
the region of interest. The precision and accuracy requ
ments of the Pade´ inversion are greatly reduced if the pole
of the Green’s function lie deep in the complex plane.

Finally, let us remember that the starting point for o
Padéapproach was the realization that the convergence
the continued fraction coefficients to ‘‘allowed’’ values ca
provide a criterion for judging the quality of a Pade´ approx-
imant, even if the analytic structure of the function we a
trying to fit is unknown. In Sec. IV, we demonstrated t
utility of this idea using thel1 coefficient. However, we
is
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know that there is much additional information that can
extracted from the remaining continued fraction coefficien
In future, perhaps our analysis can be extended to incl
e1 , l2 , e2, etc.
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APPENDIX

In addition to the usual occupation functions

f @x#5
1

b (
vn

eivn01

ivn2x
5

1

ebx11
~A1a!

b@x#52
1

b (
nn

einn01

inn2x
5

1

ebx21
~A1b!

it is often convenient to definepartial occupation functions.
For example, the Bose version of such a function looks l

b̃@x#52
1

b (
nn.np

einn01

inn2x
5

1

2p i
cF b

2p i
~ inp112x!G

~A2!

where c(z)5d ln G(z)/dz is the digamma function.22 This
can be generalized to am-order function~symmetric in its
arguments!

b̃@x1 ,x2 , . . . ,xm#

52
1

b (
nn.np

1

inn2x1

1

inn2x2
•••

1

inn2xm
,

~A3!

which has the interesting property that it can be expres
~via partial fraction decomposition! in terms of the
(m21)-order partial occupation function
b̃@x1 ,x2 , . . . ,xm#55
b̃@x1 ,x2 , . . . ,xm22 ,xm21#2b̃@x1 ,x2 , . . . ,xm22 ,xm#

xm212xm

if xm21Þxm

]

]y
b̃@x1 ,x2 , . . . ,xm22 ,y#uy5xm

otherwise.

~A4!

Equation~A2! serves to terminate the recursion.
Furthermore, it is straightforward to show that for alll>0
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~A5!

where, according to Eq.~A4!, the two-argument function
b̃@x,y# is related tob̃@x# by

b̃@x,y#5
b̃@x#2b̃@y#

x2y
~A6!

providedxÞy. TheQ functions provide a closed-form rep
resentation of the high-frequency asymptotics of a bro
class of Matsubara sums. In particular, the sum

2
1

b (
nn8

x0~QW ,nn8!G
0~QW 2kW ,nn82vn! ~A7!

can be separated into a finite sum over all low frequenci

1

b (
unn8u<np

x0~QW ,nn8!G
0~QW 2kW ,nn82vn! ~A8!
i

o
,
y

s

d

and an infinite sum over the remaining frequencies

2
1

b (
unn8u.np

x0~QW ,nn8!G
0~QW 2kW ,nn82vn!

52
1

b (
unn8u.np

F(
l 51

` x ( l )
0 ~QW !

~ inn8!
l G 1

i ~nn82vn!2jQW 2kW

52(
l 51

`

x ( l )
0 ~QW !

1

b (
unn8u.np

1

~ inn8!
l

1

inn82~ ivn1jQW 2kW !

51(
l 51

`

x ( l )
0 ~QW !Q ( l 11)@ ivn1jQW 2kW#, ~A9!

where, in Eq.~A9!, we have used the fact that the free su
ceptibility x0 admits a Laurent expansion in the frequenc
variable

x0~QW ,nn!5
1

inn

1

M (
kW

f @jkW#1 f @jQW 2kW#21

12~jkW1jQW 2kW !/ inn

5
x (1)

0 ~QW !

inn
1

x (2)
0 ~QW !

~ inn!2
1

x (3)
0 ~QW !

~ inn!3
1•••

~A10!

with QW -dependent coefficients

x ( l )
0 ~QW !5

1

M (
kW

~ f @jkW#1 f @jQW 2kW#21!~jkW1jQW 2kW !
l 21.

~A11!
e
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