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I. DERIVATION 1

The general expression for the GS is

Gk0(ω) =
∑
i

∫
drdr′e−ik0rψik(r)

1
ω − εik

ψ∗ik(r′)eik0r
′
(1)

with k0 an arbitrary momentum. Here

ψik(r) =
∑
iK

Ak
iKχk+K(r) (2)

are Kohn-Sham solutions, and χ are basis functions. We
hence have

Gk0(ω) =
∑
i

∑
K1,K2

〈e−ik0r|χk+K1(r)〉Ak
iK1

1
ω − εik

Ak∗
iK2
〈χk+K2(r′)|eik0r

′
〉 (3)

For plane wave basis, the matrix elements are

〈e−ik0r|χk+K(r)〉 = δL(k + K− k0)

where δL requires that k+K = k0 up to reciprocal vector
of the non-magnetic unit cell!

In order to avoid computing annoying matrix elements,
we will use the same expression also in the LAPW basis
set. We just need to generalized it for the non-orthogonal
basis set. The generalization is

Gk0(ω) =
∑

K1,K2,i

δL(k + K1 − k0)Ak
iK1

1
ω − εik

Ak∗
iK2

δL(k + K2 − k0)〈χk+K1 |χk+K2〉 (4)

In order to plot fat-bands (with character), we can express G inside the muffin thin sphere in the following way

GL1L2
k0

(ω) =
∑

K1K2,i

δL(k + K1 − k0)Ak
iK1

aκ1
L1

(k + K1)
1

ω − εik
Ak∗
iK2

aκ2∗
L2

(k + K2)δL(k + K2 − k0)〈uκ1
l1
|uκ2
l2
〉 (5)

which can also be written as

GL1L2
k0

(ω) =
∑
iκ1κ2

Aκ1
iL1

(k)
1

ω − εik
Aκ2∗
iL2

(k)〈uκ1
l1
|uκ2
l2
〉 (6)

with

AκiL(k) =
∑
K

δL(k + K− k0)Ak
iKa

κ
L(k + K) (7)

This expression is used to compute partial density of
states in QTL and DMFT, except that δL-functions then
requires that k = k0 and K can be any reciprocal vector.

For magnetic calculation, we need to perform calcu-
lation in bigger unit cell. Hence we have shorter recip-
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rocal vectors. Out of reciprocal vectors of the magnetic
BZ, we need to find those which are reciprocal vectors of
non-magnetic BZ. Then the sum over K above should be
performed only over the non-magnetic reciprocal vectors.

II. ALTERNATIVE DERIVATION

The green’s function of LDA+DMFT in real space,
expressed in terms of the Kohn-Sham states ψik(r), is

G(r, r′) =
∑
ijk

ψik(r)
(

1
ω + µ− εk − PkΣ

)
ij

ψ∗jk(r′)

(8)
Below, we will use the notation(

1
ω + µ− εk − PkΣ

)
ij

≡ gkij (9)

Magnetic unit cell is bigger, and hence we can write
Green’s function on sublatice A, on sublatice B, and the
off-diagonal Green’s function. If the Green’s function

is written in the position representation within the unit
cell, it is easy to derive the green’s function in the non-
magnetic unit cell. The result is(

Gk,AA Gk,AB

Gk,BA Gk,BB

)
→ (10)

Gk = Gk,AA +Gk,BB +Gk,ABe
ikδ +Gk,BAe

−ikδ (11)

Here δ is the vector connecting sublatice A and sublatice
B. For the checkerboard AFM state, this vector is for
example (1, 0, 0).

We want to write the LAPW Green’s function in terms
of the four components of sublattices. We first note that
the Kohn-Sham solutions ψik(r) are expanded in terms
of LAPW basis set functions χk+K(r) in the following
way

ψik(r) =
∑

Ak
iKχk−K(r) (12)

where Ak
k−K are eigenvectors, written in case.vector.

Since the LAPW basis functions transform under shift
in the same way as plane waves, we have

G(r1 + δ1, r2 + δ2) =
∑

ijk,K,K′

Ak
iKe

i(k−K)δ1χk−K(r1)gkijχ∗k−K′(r2)e−i(k−K′)δ2Ak∗
jK′ (13)

The generalized expression for G in the non-magnetic unit cell, in terms of the four components of the Green’s
function, is

Gk =
∫
dr
[
G(r, r) +G(r, r + δ)eikδ +G(r + δ, r)e−ikδ +G(r + δ, r + δ)

]
(14)

Using the above expression for G(r1 + δ1, r2 + δ2), we have

Gk =
∑

ijK,K′

Ak
iKO

k
KK′Ak∗

jK′gkij(1 + eiK
′δ + e−iKδ + ei(K

′−K)δ) (15)

where overlap is

Ok
KK′ = 〈χk−K′ |χk−K〉. (16)

It is clear that eiKδ is unity for the reciprocal vectors of
the non-magnetic unit cell, and it is −1 for the new re-
ciprocal vectors, which are not part of the non-magnetic
unit cell. Hence, if one of the K in the above expression is
the ”new” reciprocal vector, and one is ”old” (part of the
non-magnetic reciprocal set), the sum of the exponents in
the bracket vanishes. The same is true when both K and
K′ are ”new” vectors, because K′ −K is now the ”old”
vector, and hence ei(K

′−vK)δ = 1. We see that only the
terms which include the original non-magnetic recipro-
cal vectors survive in the above expression. Hence the
expression is equivalent to the expression in the previous
chapter, but it is more convenient for implementation. To

compute it, we only need Kohn-Sham eigenvectors Ak
iK,

since the overlap can also be expressed in terms of the
overlap. The eigenvalue problem demands AOA† = 1,
hence ∑

KK′

Ak
iKO

k
KK′Ak

jK′ = δij (17)

We use SVD decomposition to invert eigenvectors (be-
cause they are not quadratic matrice). The SVD is

A = UZV (18)

where U and V are unitary matrices, and Z are singular
values. We then have

O = V †
1
Z
U†U

1
Z
V. (19)
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We would like to write the final expression in a more
compact way. We define the ”coherence”-like factors

Ck
ji =

∑
KK′

Ak
iKO

k
KK′Ak∗

jK′(1 + eiK
′δ + e−iKδ + ei(K

′−K)δ)

(20)
and note that G is then simply given by

Gk =
∑
ij

Ck
ji gkij . (21)

Finally, it is convenient to express the Green’s
function in terms of the LDA+DMFT eigenvalues
and LDA+DMFT eigenvectors. We note that the
LDA+DMFT green’s function expressed in Kohn-Sham
basis is

gkij = ARkω,il
1

ω + µ− εklω
ALkω,lj (22)

Hence, we can define the LDA+DMFT frequency depen-
dent ”coherence” factors

C̃k
lω =

∑
ij

ALkω,ljC
k
jiA

R
kω,il (23)

In terms of these ”coherence” factors we finally have

Gk =
∑
l

C̃k
lω

ω + µ− εkωl
(24)


