Pade approximation

J

We represent the Green’s function with the following continuous fraction expansion
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For large n, this representation becomes exact.
To build this continuous fraction, we first write G(z) in the rational form

and we compute polynomials A, and B, with the following recursion relation

Aip1(2) = Ai(2) + (2 — 2i)air1 Ai—a(2) (3)
Bit1(2) = Bi(2) + (2 — 2i)aiy1Bi—1(2) (4)
and starting conditions
Ag=0 (5)
A =a (6)
By=1 (7)
Bi=1 (8)
We will check the few lowest orders of this continuous fraction/recursion. At the lowest order, we have
A
Bfi = ax (9)
We use the recursion relation to get As and Bs:
A2 = ax (].0)
B2 = 1+(z—zl)a2 (11)
which gives
A
Az 4 (12)

By  1+4+ax(z—2)

In the next order, we get

Az = a1+ (Z — 22)a3a1 (13)
Bs = 14 (z—2z1)as + (2 — 22)as (14)
which gives
é _ 0,1(1 + (Z - Zg)ag) _ aq (15)
By 1+ (z—2)as+ (z—z1)ay 14 2=z
1+as(z—22)

In the next order, we have

Ay = a1(1+az(z — 22)) + (2 — z3)aga1 = a1 (1 + as(z — z2) + as(z — z3))
By = 1+ (z—z1)as+ (2 — 2z2)as + (2 — z3)as(1 + (2 — z1)az) = 1 + a3z(z — 22) + as(z — 2z3) + az(z — 21)(1 + as(z — 23))



which gives

Ay _ a1(1 4 as(z — 22) + as(z — 23)) _ (16)
By  1+as(z—22) +as(z — 2z3) +az(z — z21)(1 + as(z — 23))
a1 1
= 17)
az(z—z1)(1+as(z—23)) as(z—z1) (
L+ 11(13(21722)%»;4(,5723) L+ 1+ 2a3(z—152)

1+ay(z—=23)

Clearly, the recursion relation can be used to get A, and B, for an arbitrary order n.

To represent GG with the continuous fraction expansion, we need to compute coefficients a; from the value of G at
some set of points z; in the complex plane (such as the Matsubara points).

We first notice that

G(z) = (18)
a
G = — 19
(22) 1+ az(z2 — 21) 19)
ai
Glzs) = — (20)
2(2' —21)
1+ 1+a3(323*22)
and in general G(z,,) = %

We can use the first equation to compute a;, the second to compute ag, etc. At order m we can get all a,.
There exists a recursion relation to compute all coefficients very efficiently. We define a matrix P(i, j), which has the
following properties

P(1,d) = G(z) (21)
. Pl—1,i—1)—P(i—1,j)
P(j) = (zj — zi)P(i— 1, ) (22)

We will next show that P(i,1) is
P(i,i) = a; (23)
We start with the first order P(1,1) = ay. In the second order we have

ai

PL2) = G=) = - — 5

(24)

hence

a1 —G(z) _ P(1,1)— P(1,2)
2 - m)G(zm) (2 —2)P(L,2) (25)

which is clearly compatible with the above recursion relation.
Next, we compute P(2,3) and P(3,3) with the recursion relation, and we will check that P(3,3) = a3. We have

_P(1,1) - P(1,3) a1 —G(z)
P23 = (23 = 21)P(L,3) (23 — 21)G(23) (26)

Next we express P(3,3) with recursion relation

_ _a1=G(zs)
a3 = P(3,3) = P(2,2) — P(2,3) _ 2 =~ (z3—21)C(z3) 27
’ (23 = 22)P(2,3) (25 — 29) g5l

which is equivalent to

a
1+ az(z3 — 22) = TGZ(Z&) (28)
(23—21)G(23)
or
az(zs - 21) _ a 1 (29)

1+ (13(23 - ZQ) G(Zg)



or

hence P(3,3) is indeed as.

1+ 5

a
az(z3—21)
+az(z3—22)

= G(z3)




