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The LAPW basis takes the form:
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The matching condition at the MT-sphere S gives
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The two solutions satisfy the following equations
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We multiply the first equation by r;(r) and the second by ru;(r) to obtain

/0 " ar {rul(r) (-52) rug(r) — rug(r) (-j;) mll(r)} = - /0 ’ drruy (r)u (1) (7)

Integration by parts gives
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which finally leads to
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We can than simplify the solution for a;, and by, to
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This equation is implemented in Wien2k, and also in both dmftl and dmft2 steps.
To compute the projector, we need the overlap between a localized function ¢(r)Yy(r), and Kohn-Sham states
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If function ¢(r) extends sufficiently outside its MT-sphere, the overlap L{ "o will have non-zero contribution from all

other MT-spheres. However, we will use only the envelope function outmde its center sphere, because the increased

charge in the neighboring spheres really should not be counted here as charge contribution to ¢(r) function.
Therefore we have only two contributions. Inside MT-sphere we have
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and outside MT-sphere we get
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I. FREE ENERGY AND TOTAL ENERGY

The equation for the total energy is
1
E = Ti(HoG) + 5 Tx(2G) — ®P%nype] + ] + @[] (14)
where
Hy=—V?+0(r — /) Vou(r)
We typically evaluate it in the following way
1
B = Tr((=V? + Vewr + Vi + Vae) G) + 5Tr(2G) = @ [proc] = Tr((Vir + Vae)p) + @[] + 2] (15)
Namely, we use the Green’s function of the solid to evaluate:
By = Te((=V? + Vear + Vir + Vi) G) = Te((Vir + Vie)p) + 7 [p] + @[] (16)
and the impurity to evaluate
1
By = 5 Tt(SimpGimp) — P i) (17)

Notice that %Tr(ZimpGimp) is not evaluated as a Matsubara sum, but we rather compute it from probabilities of
atomic states, i.e.,
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The free energy functional is
I[G] = Trlog G — Trlog((Gy ' — G™1G) + @ [p] + &*¢[p] + @PMIT(Gy,.] — P [proc] (19)
hence stationarity gives
G_l—G61+VH+VxC+EDMFT—VdC=0 (20)

and hence
F =Trlog G — Te(SG) + Tr(Viepioe) + 2P [Groc] — 7 proc] — Te((Vir + Vae)p) + @7 [o] + (o] (21)
Since Fj,,, contains @PMET e
Fimp = Trlog Gimp — Tr(ZimpGimp) + @PMET(G 0] (22)
we can write

F= TrlOg(G) - Trlog(Gloc) + Fimp + ’I‘r(Vdcploc) - (I)Dc[ploc] - T‘r((VH + Va:c)p) + (I)H[p} + q)zc[p] (23)



where
Fimp = Eimp - TSzmp
and
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Eimp = Tr((A + Eimp — wnﬁ)Gmp) + §Tr(2mmep) — TSZmp
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Hence
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F+ TSy = Trlog(G) — Trlog(Gioc) + Tr((A + imp — wnW)Gimp) + iTr(EimpGimp) + Tr(Vaepioe) — 7% [proc)
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which can also be cast into the form
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F + TSipmp = Trlog(G) — Trlog(Gioe) + Tr((A — Wno— + Eimp + Viae)Gioe) + 5Tr(zmpc;mp) .
—Tr((Vir + Vae)p) + 7 [p] + @°[p] (25)

We thus compute the following quantities with the Green’s function of the solid:
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Fl =Tr 10g(G) —Tr lOg(GZOC) + TI"((A - wnGT + Eimp + Vdc)Gloc) - Tr((VH + Vwc)p) + CDH[p] + (I)zc[p] (26)

and the following with the impurity:
1
FQ = §Tr(21mpGlmp) — (I)Dc[pimp] — TS?mp (27)

Notice that Fy is similar to Fy (except for the entropy term), hence Egoiq4 and Fisop;q4 contain exactly the same Monte
Carlo noise.
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