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I. LAPW INTRO

First we refresh the basic LAPW equations. The LAPW basis in the interstitials is

Xiesk (1) = \}

and in the MT-spheres is

4rit N
e IeHtor = Z AR Y (Ryu(k + K))jt ([ + K1 = 1) Vi (Ru(r — ra)) (1)

7Til 2
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In the last term we take a combination of ', b*° and ¢/® so that the combined orbital

al??(r) = aloun(r) + B2u(r) + el (3)

v

vanishes at the MT-boundary. In LAPW method, we can also make derivative dul®®(r = Rysr)/dr vanish, while in

APW+lo only the value u!°°(r = Rjsr) vanishes. Note that the index for the local orbital v comprises (1, [, ji, v, M)
in this order, where (u, I, jio, @, m) are (index of a sort, [, index enumerates local orbital, index of the equivalent
atom, m).

Notice that the phase factor in the local orbital functions is taken to be the same as in augmented plane waves.
Moreover, K, is taken to be different for each local orbital component. Namely, each set of equivalent atoms and
their m quantum numbers are assigmed a unique set of K’s, usually just starting from the beginning of the list. For
different atom types and different [’s the reciprocal vectors repeat, so that for example each first atom of a new type
and its first m = —[ will have K, = 0 vector.

The matching conditions, which give continuous derivative of yyxx across S are

w(S) (S at* N\ _ 1 Gk +K[S) )
Luy(S) siu(S) brK 52\ £k +KI[9)
with the solution

aktK _ i %ul(S) —’lll(S)
(E}l(JrK ) R (—dddrul(s) w () ) w(S) Ly (S)

1 < Ji(lk +KIS) >
—(8) L (S) \ di(k+XK[S)

The two solutions satisfy the following equations

<_§:2 + l(l:; 2 + Vis(r) — Eu) riy(r) = ruy(r) @

We multiply the first equation by r;(r) and the second by ru;(r) to obtain

/OS dr {ml(r) (_c;f?) rug(r) — ru(r) (-C;i) 7“111(7")} =- /Os drruy (ryu(r) (8)



Integration by parts gives

s
=1ty (r)— (rug(r)) + rug(r)— (ri(r)) ) =-1 (9)
which finally leads to
() T (S) ~ () Li(S) = o (10)

Hence, we can than simplify the solution for a;,, and b, to

atEN _ (w(9) Lk +KIS) — Lay(S)ji(k + K]|S)
( ik ) - ( 9 ()i ([ + KIS) — wr(8) [k + K|S) ) ()

This equation is implemented in Wien2k, and also in both dmftl and dmft2 steps.
In the following we will many times use alternative shorter notation for these coefficients, namely,

ax = ay ¥ (12)

BZK = B%H_K (13)

To construct the basis functions w;, the Hamiltonian in the muffin-thin sphere is solved in so-called spherical
approximation to Kohn-Sham potential. The KS Hamiltonian has the form

HPh = V2 + VKs(I‘) (14)

where Vigg(r) = V25" (r) + Vi g"¥™ (r) is split into spherically symmetryc and the rest. In the calculation we actually
use an equivalent but more symmetric form of the kinetic energy operators, namely

Tio = (x| Tlxc) = / (Vxi) - (Vxx) = / V- (e Vxk) + / Yie (—V?)xk (15)

In the interstitials we use directly V - V operator, while in the MT-spheres, we need to add the surface term on the
MT-sphere, i.e.,

(X [H*™ [XK) pir = / dr Xie (V2 + V" xx + ¢ dSxic Vexx (16)
MT MT

To evaluate these terms in the MT-sphere, we first define

amK = @ N O Y (R, (k + K)) (18)
. 4mitS?
bimk = bt Oy (R, (k + K)) (19)
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v
4mitS?
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v VT, [ v \/‘7 Im 13 v
4mitS?
lo _ lo i(k+Ky)r, v *
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(23)
We also define the following matrices of matrix elements
E —¢ 1 E’JQFE{ — &) (w|uf®)
H= ] (EL - ) (i) (E55 = o) (@lut©) + & fwluf®) | (24)
(B2 — o) (et ©) | (B2 =€) Gulu©) + § (ulut©) (B — &) (ufOluf©)




and for the surface term

wé di 1 duf LoOd
wgt 557 + UG 3 Wy © 4+ W dlff
LO B
S _ @2 dul duy 1|, duy LO dug
H” =S5 252 +wy (U 3 (Mg tu gy (25)
1], duf® LO@ 1] duf® LO diy LO du[©
2 [ul + g dr 2 | Wy + ug dr u dr =5

The matrices correspond to ((uf |Heym — e|uff) + (uf| Haym — €|uf/>*)/2, where x runs over [u, i, u*?]. The derivation
of these matrix elements will become clear below. Note also that the H7, term looks different, but we could cast it

into more symmetric form using Eq. 10, namely H?, = [y d“l + 1y d‘“} so that the matrix is
d di d [ duf duy |
uy Gt G + ]| L |w Sk +ulLOﬁ
S _ g2 1 m duy diy 1y dul LO diy
H - S [ + ul dr ] u dr 2 w dr + ul dr (26)
1 dul LOdu | |1 LO diy LO duf®
2 [ul T J 2 { dr ur =gy g

Using Eq. 6 and 7 we can evaluate the Hamiltonian in the MT-sphere. First we calculate the terms without local
orbitals:

(xx/[H*Y™ — e|xx) yr = / dr i (—=V? + Ve —e)xk + ‘7{ d§xi<,vaK (27)
MT MT
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Here we center the origin on studied atom, and assume that the axis was properly rotated to the local coordinate
axis. We know that

oy du(S) du(S) 1
u(S) o u(.S) =5 (29)
hence we can use this identity in the last term to obtain more symmetric result
X [ H*Y™ = elxk) i = (E1 = €)(ahmxr @imK + bppge: bimi (| ) + agp g0 imk + by @imk (30)
. duy (S . . diy (S . . diy (S
+ 5 <almK/almKul(S) (liE" ) + bl brmxc i (S) cllE“ ) + (almk bimk + bk Gimk )wi (S) (;i ))

We can cast this equation into the following matrix form

AmK
Ol = elxiharr = ((@huaer Vioze 0) (HHH) | b 51)
0
Next we calculate the local-orbital part. The mixed term of the Hamiltonian is symmetrize and takes the form
~ 1 1 X
Hyk, = 5 <XK|H8ym - €|XU>MT + 5 <XV|Hsym - 5|XK>MT = (32)
1 . X 1 -
5 [ b (VA VRS —e)xu +xu (V2 + V" — i + 5 dSxacVexw + X0 Vaxi] (33)

2MT 2MT



7 (47S%)? (K, —K)r *
Hig, = <= 37 Y (B (K 4 K0) Yy (R (K, + K)) (34)
m’ !
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52 - duloca! d(aku; + bty
o ~ b . 1 local
+ 3 <(alKUl + bk i) o T ar . (36)

Here overline means symmetrize the matrix elements. Note that u!°¢ is the orbital which vanishes at the MT-boundary
ule*(r) = altun(r) + B2i(r) + cut© (37

and hence we can drop the last term of Eq. 36. But in this derivation we will keep it, so that the result is more
symmetric. We will again use the identity

(S) e u(S) o + o (38)
to obtain a symmetric form of the surface term
52 - = . du%ocal 52 local d(dlKul + EZK’I'Ll)
E(QZKUI(S) + blKul(S)) . + 711,1 ar = (39)
dui(S) - duy (S
a2 (5) PUBE) | 5 o g2 9y LulS) (40)
dr dr
- ~ 1 duy (S
st + bucal?) (5 + $%u(5) 7)) (a1)
S? du©(9) u
~ lo l LO l
2 MRS =t 42
ey > (u(8) M 4 ufO(8) ) (1)
~ 52 du©(9) ]
lo : LO l
2 = ) 4
ey 2 (in(5) ™ L upO(s) 2 (13)
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Next we need the action of the Hamiltonian operator on the local orbital
(=V2 4 Viym — e)ulo®(r) = alou; (B — ) + 2 (w (B — &) +w;) + couFO (B —¢) = (45)
(a®(E; — ) + bl)uy + bl°(Ey — &)y + (B — e)ul® (46)
and we also use the action of H on LAPW
(=VZ% 4+ Viym — e)u = (B — )y (47)
(—VQ + Vsym - E)ﬂl = (El - 6)7.'” =+ g (48)
We hence get the following expression (in the form used in lapwl)
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Inserting the above quantities into the previous equation, we get an equivalent expression

lo
K, ,v,m/,p

T * * S o
HKV = Z (alm’p/K blm/H’K O ) (H + H ) bll(y,l/,m’,#’ (54)
mH Cllgl,,u,m’,u/
Finally, we work our the local-orbital part of the form
7 1 sym sym *
Hy, = §(<XV|H Y _S‘XV’> + <XV/|H o= 5|X”> ) (55)
First we recognize
sym (47T52)2 (K, —K,)r /v *
O [ H™ = elx) = > el WY (R (Ko 4 K)) Vi (R (K, + k) X (56)
m’
() (wi| H — eluy) + 0 (| H — eluy?) + e (uf | H — eluyr)) (57)
and hence
lo
7 (47752)2 (K, —Ky,)r /v * 1 1 I alyl
Hyyp = 22 37 SRy (R (K + )i (R (K +X0) x (ale, bl el )2 | bl | (59)
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In more compact form we can write
alIg ! " 1
~ v m
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The surface term vanishes here, as we are evaluating terms like ulu",C(S)d%ulfc(S). We can therefore add to H the

surface term H*° without changing the result. Namely, we could send H — M +H5 in Eq. 59.
We will need quantities like

> Aly Hyx Ak; (60)
K'K

where Ak; are KS-eigenvectors and K runs over reciprocal vectors as well as local orbitals. Since H is equal in all
terms, we can simplify

T * t lo * . lo .
ZK’ AiK'almpK’ + ZKU AiK,,aKu,u,mu ZK alm/JKAKJ + ZK,, aKV,V.,m;LAKuJ
t * T lo * . lo )
ZK/ AiK’blm;LK’ + ZK,, AiK,, bKu,u,mu H ZK blm#KAK] + ZK,, bKU,l/,m/LAKVJ (61)
i lo * lo .
2k, Aik, K, mp 2K, Ky wmp K
and if we call
lo
A5 imp ZK alm,uKAKj + ZK,, aKU,v,m;LAKuj
= . lo .
bi,lmu - ZK blm#KAKJ + ZK,, bK,,,z/,muAKv] (62)
) lo .
Cilmp 2K, Ky wmuAK,j
we get
E3
a’i,lm,u Q5. lmp
*
b@lmu H bj,lmp, (63)
* .
ci,lm,,u Cjlmp

BELOW IS THE OLD TEXT, WHICH IS WRONG



(HP" — €) [xK) = Yim (F)lagy, (B — e)ui(r) + by, (B — e)iu(r) + by, (r)] (64)

Here we center the origin on studied atom, and assume that the axis was properly rotated to the local coordinate
axis.
The Hamiltonian is then given by

{acr [H™" = elxx) = /dT[azIfr;*uz (1) + bl " (r) + clity " wro (r)][ali (By — e)un(r) + bis, (By — €)iu(r) + bisui(r) + i, (Ey — €)uro(r)65)

which gives

(O [HP" —elxx) = afy,"[aly, (By — €) + biy, + i (B — €) (uluro)]

+ B (B, — €) (i) + e (B, — €) (wluro)]

+ cl " lafs (By =€) (urolw) + b, (urolu) + bis, (B — €) (urolin) + cfy, (E, — )] (66)

Here we used the relation (u;|d;) = 0. The Hamiltonian is Hermitian, but in its current form appears non-Hermitian,
hence we will symmetrize it,

s x 1 /% /% 1 !/ x /%
(xcr[H" = elxx) = atsn"atin(By =€) + g lat bl + bl at] + 5 latn” clin + el at] (B — €) (uluro) +
" L 1 k' " .
+ b bl (B — €) (i) + §[bllfn Cla + Cln b (B — €) (tuluro) +

1 /* /* 1 l* /* . I*
+ 5[05,1 al, + af, cllfn](E,, —¢){(uro|w) + 5[05,1 b 4+ bE, c}fn][(uLo\uﬂ + (BEv —¢) (urolw)] + i cllfn(Eu —€)

which is simlified to

’ ’ .. 1 /% %
(X [HP" — elxi) = ajy,“ajn, (B, — &) + bjs, b, (B — €) (i) + 5[‘111; Dl + Ui, i) +

Im Am

’ 1 ’ ’
+ o g (B = €) + S [, ity + ity aga) (B + B, — 2¢) (uluro) +

2
1 . . .
+ 5[0}571 bis, + bim ciwl[(urolw) + (Ey + B, — 2¢) (upoliy)] (67)

END THE OLD TEXT —————

1. Eaxtra term when using APW+lo

For efficiency, wien2k uses APW+lo for many atoms (and for others LAPW), because less plane waves is needed
in this case. The basis function in the MT part looks similar, except that b;,, =0, i.e.,

Xtk (1) = (amun(|r = o) + cmu(Jr — va)) Yim(R(E —1,))  MT — sphere (68)
As u!°¢ vanishes at Ry only the value of Xk+K is matched to determine agy,:

4 i ~ ~
o = T T (R(l+ KO+ KIS) () (69)

However, u!°¢(r) is constructed differently in APW+lo. In LAPW method, u!°(r) is constructed from u;, v; and
ulQ, where ul2 is linearized solution at some other energy Ej, different from E;. To costruct u!?, however, we use
just the combination of u; and 1y only, i.e., u!° = au; + Bi;. The combination of these two function suffices to
achieve u!°°(S) = 0 and [ |[u'°°|?dr = 1. The dissadvatage of this basis is that the derivative of yxik(r) across
the MT-boundary is not continuous, hence additionsl term in the Hamiltonian and forces is present. But since the
convergence with plane-wave cut-off is better, this is a small price to pay.

The form of the kinetic operator used in the interstitials is

Taox = / (Vi) (Vxx), (70)



while in the MT-sphere, we use the alternative form (x| — V?|x). Using Stokes theorem, we can always change between
the two forms

(Vxic)(Vxk) = V- (xic Vxk) + xicr (—V?)xx (71)
hence

/ (VX ) (Vi) = / Pryie (-V)xk + f § (X V) (72)

We use this for the MT-sphere part, and whenewer T needs to be evaluated, we add this extra surface term

/ Pr(Vxi) (Vxk) = / P (~V?)xk + f 45 (xie Vxx) (73)
MT MT MT

Discussion about this can be found in PRB 64, 195134 (2001) in appendix.

II. FORCES

We start with DF'T forces in LAPW. The DFT functional is

E= TI‘(—VQG) + EH [)0} + Exc[p] + Tr[pvnucleous] + Enucleous (74)

ZoZ
Here Enucleous = %Zo@gﬂ |Rafl:/{3| and Vnucleous(r) = - Za ‘r,ZﬁOJ
We can rearange the functional using the eigenvalues in the DFT solution

(=V?+ Vis — &) [a) = 0 (75)
and get
E = Tr(EzG) - TY(VKSP) + En [P} + Eatc[p] + Tr[pvnucleous} + Ernucieous = (76)
Z Eifi - T‘I‘(VKSP) + EH [P] + E:Ec[p] + T‘r[pvnucleous] + Enucleous (77)
i

This is the equation being implemented, hence we have to look at small variation of this functional with respect to
small movement of a nucleous éR.,,.
We get Helman-Feynman forces FZ¥ by varying the following two terms

5Enucleous

OVpucleous
SR, + Tr(p—aceonsy — _pHF (78)

R,

The rest of the variations can contribute to Pulley forces

0E =Y dzifi — Tr(pdVis) — Te(Vicsdp) + Tr(Vidp) + Tr(Vacdp) + Tr[Viucieousdp] — > FHFT R, (79)

(3 «

Notice that we did not varry f;. This is because such term would contribute to entropy, which we neglected here
anyway. Within DMFT, this has to be handled correctly. The terms 2-6 are all computed in real space with numeric
integration, so we can safely cancel terms 3-6, since they are computed in exactly the same way. We get

0E = dcifi — Tr(pdVis) — » FHFoR, (80)

[e3%

The first two terms do not cancel because of the discretization using LAPW basis set in computing eigenvalues.
To get variation of eigenvalues, we need to follow their computation, which is achieved through the following
diagonalization

Z A:,K’ (HK’K — EiOK’K)Ai,K =0 (81)
KK’



Even when atoms move, this equation remains satisfied, hence variation of the equation has to vanish. The variation
gives

0= Z 5A?,K/(HK’K - EiOK’K)Ai,K + A;K/(HK’K - EiOK'K)(SAi,K + A;KI(CSHK/K - giéOK/K)Ai,K - A;KfOK’KAi,K(SEi
KK’

The first two terms vanish, the term EKK, A;K,OK/KA@K =1, hence

582 = Z A;—’:Kz ((SHK/K - Ei(SOK/K)Ai’K (82)

KK’

Next we vary Hamiltonian and overlap

§ (xx'|H|xx) = (Oxx |H|xk) + (xx'|[H |0xk) + (xx|0H |xK) (83)
§ (xxrIxx) = (Oxx [xx) + (xx/[0xK) (84)
to obtain
= > Aly (Ox [H — gilxk) + (x| H — &il0xk) + (xx[6H |xx)) Ai x (85)
KK’

Putting all terms together gives

OE =Y fi Y Al (oxx[H — eilxx) + (xx|H — €ildx) + (xx[6H|xk)) Aix — Tr(pdVics) — > FHTRA(36)
i K,K’ o

and hence Pulley forces are

OXK' 1) 1) oV
Fgulley Z fz Z A1 K ( XK |H o 51|XK> <XK/|H — Ei‘ 5;;K> <XK | H|XK>> Ai,K + Tr(p 61:?3 ) (87)
7 K, K’ “

which can also be written as

L = = 57 1 (R v+ Gl <) + g Hlv)) + T )

Here
(il = H) = (6 S ) + (Wl 31 ) (59)
The first term . fi (Y| 55 VIS |qhipe) = (p‘?{{s ) cancels with the last term above, when Vi g is treated exactly (not

approximated by spherlcal symmetrlc part).
The kinetic part <¢ik|% i) is present when the (x,r|V?|xx) jumps across MT-boundary, as there is additional
surface term.

A. Core

In core, the index is [,m instead of K. The wave functions of core states have the following form 7. (r — Ra),
hence they move with the atom, and their derivative is

OXim (r — Ra)

hence we have

§VK5)
R,

5
Fprulles — 3 <<Vx2’mH = &ilXfn) + Xl H = 2l VXEn) = (Xl 5 Hxlm>) +Tr(p

lm



In core we approximate Vkg(r) to be spherically symmetric. It is then easy to see that H is spherically symmetric
too. In fact, all m’s are degenerate, hence >  Vx{¥ o ep, and consequently all three terms on the left vanish, as
they are odd in space. The only nonzero term is

0Vks
R,

FPulley — Ty( ) = —Tr(pV:V§gs) (92)

Note that here spherical symmetric part ov Vi g(r) does not contribute, as such term appears also in the thirt term
above and we argued above that it is odd. Hence, only the non-spherical part of Vig(r) gives contribution to the
integral

B = —Tr(pa Vi Vigg' ™™™ (93)

B. Valence states
1.  Basic Derivation

In the interstitials, we use originless plane waves, hence

SXK
5RK =0. (94)

In MT-part, we check definition of XJ\K4 T in Egs. 2 and 11. The approximate formula is

oxi "

X (K + )T = Vel (95)

The first term comes from the phase factor of a;,’s Eq. 11, while the second term is from differentiating u;(|r —
R, |)Ylm(f‘—Ra). There are additional terms when differentiating a;,,,’s as u;(S) changes as well, but their contribution
is here neglected.

We hence have

B0 = 37 £ 3 Atgei(K — K Qe — =) yrr Ak + (96)
i KK’
Y D Ao (Vx| H = eilxac) ypr + (or [ H = €1l Vexx) arr) Ak (97)
i KK
oT 5VKS 5VKS’
— i Al g = A A; T 98
S0 3 A (vl a0 + o ) ) v+ TS (98)

First we simplify Eq. 97. We split H — e = Vg + T — ¢ and simplify
/ &r (Vexico ) (Vis + T — e)xk+xk + Xio (Vs + T — ) Vexk k) = (99)
MT

d3rVKSVr (X;{’—}-kXK“Fk) + d3rVr (Xf(/_,_k(T - 5i)XK+k) (100)
MT MT

The last term is because V comutes with V2, i.e,

/VX*(—VQX) +X(-VA)Vx = /V(x*(—VQ)x) (101)

We thus have
/MT *r (Vexio i (H =€) xk4x + Xy (H — €) VeXkik) = (102)
/MT PrVis Ve (Xic XK k) + jé—R* dSXicr 11 (T — £) XK 4k (103)
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Inserting this simplifiaction into Eq. 97, we get

Eq. 97 = / PVis(r)Vep"™ (1) + > fi Y Al Aik dS X (T — €)Xk +x (104)
MT i KK’ r=Ry

Next we simplify Eq. 98. The second and the third term cancel, as we compute density by
p(r) = > fidkk AixXi (r)Aikxk(r), hence for any function X(r) we have Tr(X(r)p(r)) =
Yifiykk Al Aik [ d®rxi (1) X (r)xx (r). We are hence left with the first term in Eq. 98 only. When we integrate
a function whith discontinuity at the MT-boundary, we need to take into account an extra term due to the jump.
One can derive the following identity (see section IV C)

<X}L|6T|Xu> = 0R, d§ [(XZTXV)MT - (X:;,TXI/)I} (105)
RMT

This term is just because x,,(r)Tx, (r) is not continuous across the boundary, and hence the difference at the boundary
adds an extra term to the ingeral. We thus conclude

Eq.98=-) fi Yy AixAix ]{ dS [ (X 41 (0) Txr (1)) arr — (a4 (0) Tx () ) 1] (106)
i KK MT
since xk+k (r) are continuous across MT-boundary, we can also write

Eq. 98 = — Zfi Z Al Aix

i KK’

j{ B d§xf</+k(r)(T — &) XK+k(r) — 7{ . ngf('+k(r)(T — &) XK+k(r)(107)
r=R r=R

=ur =y

Finally, we notice that the second term in 104 and the MT-part of Eq. 107 cancel, hence we obtain

Eq. 97+ Eq. 98 = / A3V s(r)Vep?®(r) + Zf’ Z Al Aix ]{ d§xR,+k(r)(T — &) xK+k(r) (108)

MT

i KK

Notice that the functions xxik, which appear in the integral, are evaluated in the interstitial, hence the symbol

= RLT

The final result for Pulley forces, which is the sum of Egs. 96, 97 and 98 is
FUUY — =iy fi Y Al (K —K') (xi [H = &3l x) o Aik + (109)
i KK
SRS Al Ak f A5t (1) (T — £2) X (r) + (110)
i K, K’ r=Ryp
+/ 3 Vies(r)Vep®(r) (111)
MT

In the MT part, the kinetic part 7" does not have the form (V - V) proposed in Sec. I 1 (but —V?), hence we need
to write

Eq.109=—iY fi > Alg (K -K') (xx|— V> + Vs — &ilxK) 7 Aik — (112)
i K K’
iSRS Al Ak (K - K) 7{ - S\ 11 (T) Vaxk sk (r) (113)
i K, K’ =0y

Moreover, the MT part is usually broaken into two parts, the spherically symmetric potential V%" (r) and the

non-symmetryc part Vg™ (r), i.e.,

Vis(r) = Vg™ (r) + Vigg ™™ (r)

hence we can write

Eq109=—i) fi > Ajg(K-K') (xx| = V> + V& (r) = €ilxk) yyp Ai K — (114)
7 K K’
=iy fi Yy Al (K = K') (e [Vis ™™ (0)IXK) prp Aik — (115)
7 K, K’
—iy fi > Al Aix(K-K) f A8 (P) Vexk4x(r) (116)
i K, K’ r=Ry
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In the interstitails, T has the form (V - V) proposed in Sec. I 1, hence Eq. 110 takes the form

Eq.110=Y"f; 3 Al Aix[(K+k)(K' +k) - &] jq{ X AS X (X)X 41 (T) = (117)
i K, K’ r=Ryr
, ) el(K-K)r .
=> fi Y Al Aik[K+k)(K +k)— si]RMT/dQ‘/ier = (118)
% K,K’ cell

zGr
_ZfZZA k_cAik K+k)(K—G+k)—5i]R?\4T/dQV (119)

X cell

where we used K’ = K — G.
Using the above derived identities Eqs.114,115,116,119, we transform FFu/1ey to

P = N7 03 Al (K = K) (vr| = V2 4 V(1) = ealxi) g Aik — (120)
1 K K’
=iy fi Y Al (K —K') (xx [Vieg ™™ (1) [x) pp A — (121)
% K K’
—iy fi Y Al Aix(K-K') 7{ AS X 11 (T) Ve xi (1) (122)
i KK’ =Ry

iGr
+ZfZZA Ak (K+k)(K—G+k)—5i]R§MT/dQ;—e} (123)

- cell
+/ d*Vies(r)Vep®® (r) (124)

MT

2. Implementation of term 120

The first contribution to FX“"¢¥ we are considering is Eq. 120

F(1)Futey = ZZ fi Z Al (K = K') (x| = V2 + VR" (1) — cilxk) o Aik (125)
i KK

We first repeat Eq. 67, which gives spherically symetric part of Hamiltonian in the MT-part:

sym / % .o 1 -
(xk/| = V2 + V™ (r) —elxk) = als ak (B, — ) + b b (B — €) (wli) + - [als, blS, +bfS 7 al ] +

2
/ 1
iy i (B =€) + gl alf, + i aly) (B, + By = 22) (uluro) +
1 .
Gl i + 0SS (usolu) + (B + B, — 2¢) (urolin)) (126)

Clearly, we can split the sum over K and K’ into two indepedent sums which take O(N) time.[We want to avoid
O(N?) scaling, since there are very many number of plane waves K].
We first define (compute) the following quantities

Qi lm = ZAiK ay, (127)
K

ffi,lm = Z K Ak af, (128)
K

which take O(N) time to compute. Here A; x are eigenvectors corresponding to the Kohn-Sham energy ;. We

assume corresponding expression for b i, Ci.im, Biim, Ciim-
The quadratic terms of the form aj,,a;, become

Z (K K/)A K’a’lm almAiK = a’;lm"éfﬁlm - j:,lmai,lm =2 Im{az(,lmji,lm} (129)
KK’
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while those of the form aj,, by, + bj,,,a1m become

1 — —
aff( Bi,lm - 'Az lmbl lm + bz lm'AZ lm — B:,lma’i,lm] =

1 /
Z (K — K’)A;‘K,i[al}fn*bl +HS Al Ak = 5[ ilm

KK’
=1 Im{a;lmg“m + b;lmA’i,lm} (130)

The entire term can be expressed in this way. We start from Eq. 126 and derive

Z(K K') A (xx| — V2 + V}i%h(r) - 5i|XK>MT Ak =
KK’

iTm { — &) + 2 1 Bim (B — 1) (i) + a7 g B i + b;jlm,ii,lm} +
+ m {2 & 1mCiim (B — &) (uroluro) + [0} 1 Cim + ¢ 1 Aiim] (B + By — 227) <U|ULO>} +

+ itm {6 Biim + Ui Ciaml (s olur) + (B + By = 223) {urolin)]} (131)
which finally gives

F()Fey = =i " fi > (K = K) Al (x| — V2 + V" — eilx) o Aik = (132)
A KK’

> film { (205 1 (B — i) 4 b 1 + € 1 (B + By — 2¢3) (uluro)] ftz‘,lm} +
%
3 St { [0+ 20740 (B = ) Gialie) + €l (usolw) + (B + By = 263) (usolin)]] Biom } +
+ ) fiIm { (67 1 (urolwr) + a7 1, (urolur) + b5 1 (uroli)|(By + By — 22i) + 2¢54,, (Ey — &) (uroluro)] @,lm}
%

This is implemented in function fomail. Note that /ﬁg and C are called aalm,bblm, and cclm. Also note that
(t|u) = pei, (urolu) = pil2lo, (uro|i) = pel2lo, (uroluro) = pri2lo.
This force is called £sph and is coded in Forcel.

3. Implementation of term 121

The second term we are considering is Eq. 121

F( Pulley _ Zz.fz Z Az K’ K _ K/) <XK’|VI?§Sym(r)‘XK>MT Ai,K_ (133)
i KK’

In file case.nsh, we read non-spherical symmetric potential, which is given in the following form

k1limikalama

ynon—sph —/d?’TYzlml( YU VTSI ()2 Y L (F) (134)

The data in case.nsh contains the following matrix elements

(u|V]u) — tuu (135)
(u]V i) — tud (136)
(W|V]u) — tdu (137)
(w|V]u)y — tdd (138)

(139)

To evaluate the term, we substutute the definition for yx to obtain

> (K —K) A (e [V [xk) g A = (140)
K, K’
Z (K K/)AzK’ mlml Z G‘er,nl ulll |Vn Sym|Yv12WL2 Z afﬁg“f) AZK (141)

K, K’ K1 Ko
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which simplifies to

37K — KAl Oaae V™ xa) o Aisc = (142)
KK’

a*nl,z 1K2,% A*nl,zanz,z _ (143)
limy ¥ Mome ¥ E1lima,kaloma ™ Ay Ylomy Vei1lima kalome —

rk1limi,k2lame

. *K1,1 fK2,t
2:Im E A my Poame Vﬁll1m17f€212m2 (144)

rk1limi,kalams

hence, we have

Pulley *K 1,0 K2,0
Z.fz Z 2Im {allml Nlllmhﬂzlzmz'AlzmQ} (145)

Kilimi,kalama

This is implemented in fomail and has name fnsp. Note that A’, B', C are called aalm,bblm,cclm and matrix elements
of V are called tuu,tud,tdu,....
Implementation builds the following quantity

CLf(lC(I{27 lyma, lQm?) = Z azklfi;,ll kilimy,Kkalama (146)

and evaluates

Pulley Z fz Z QIm[afaC(lig, l1 my, lgmg)Af;’nJ (147)

limy,lomao, ko

It is implemented in Force2.

4. Implementation of term 122

Next we consider Eq. 122, which is

P3P = i3 1 Y Al Aix(K — K) ]f 45X 11e(F) Ve X e(x) (148)

i KK’ r=Ryp

We know that the therm should be real, therefore we will symmetrize it to make it real

F(3)q = Zfz > Ak Aik(K-K) ]{ ANk (1) Vexi 1k (r) + Xk (1) Ve (r)] - (149)
% K,K’ =Ry

which is equal to

F(3)" Pulley Zfl Z A Ak (K- K/)RMT]{

. 0 9
dQ [XKUrk(r)EXKJrk + XK+k(r)§XK'+k(r)] (150)
ki KK’ =Ry

and inserting expression for y we get

i ’ ’ ’ ’
Pulley __ * / 2 K * K K 1K K K K% 1K
F(3), D) E i E Al Aix (K —K') Ry r E A KW Ay KW T Ay UL Ay U (151)
ki KK’ L,m,k' K

and summing over K and K’ gives

Pulley "% /K xR
F(3), § szMT E [a um“z Az lmul +A1 mU 'leul - zlmul az,lmul - zlmul i,lmul](152)

l,m,k Kk



which can be simplified to

Pull 2
( ) WY =R TZfZ Z Im zlm zlmul - zlmul a‘z,lmu/?]

k,i lm,k’ K

We can then define the following quantities
kinfac(1,ilm) = Z aiimup (Rar)
kinfac(2,ilm) = i aflmulf(RMT)
kinfac(3,ilm) Z AZ it T (Rarr)

kinfac(4,ilm) :ZA“mul (RmT)

and write

F(3)Puley — 2 . Z fi Z Im[kin fac®(1,ilm)kinfac(3,ilm) — kinfac™ (4, ilm)kin fac(2,ilm)]

k,i l,m

This part of the force is named fsph2 and is coded in fomail within Wien2k, and in Force3 in my code.

5. Implementation of term 128

Finally we discuss implementation of Eq. 123:

zGr
g)Futtey =N f; ZAlK cA K+k)(K_G+k)_5i}R?MT/dQV p

14

(153)

(154)
(155)
(156)

(157)

(158)

(159)

The convolution in K needs quadratic amount of time (O(N?)). By using FFT and turning it into product in real

space, it takes only N log(NN) time, hence we will use FFT for the following quantities

ZA K+k iKr
:ZALKG
K

The inverse FFT should then be used to obtain aternative representation for convolution

iGr
D=2 1, [ e e R )Xo - Y Vil By [ a5
ce
Finally, one can check that
zGrﬂ G iGr
dQe'™=r e, = dr—— j1(|G|Ryr)ie T
|G|
This code appears in Force_surface.
6. Implementation of term 124
The last part in the Eq. 124 is
FO)L = [ dVieso)Vo) = 3 [ @ Vi (¥ (69 (1) )
MT

Iml'm’

(160)

(161)

(162)

(163)

(164)
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The operator V is spheric harmonics is

. — 0 cos ¢ —sing
o  sinf [ P 9 1 o 1
= _‘,r,— _— — 1 = _’T‘ - 1
Vi=e or + T COS_ 9;1n ¢ O(cos 0) + rsin6 cos ¢ 0¢ “or + r Voo (165)
sin

The last form emphasizes that V has the radial part and a angle part. Using this decomposition, we can write

PO = [ErVies@Tp) = 3 [ dr Vi) P2 [ a0y, 08 ine) (166)
lml'm/
o 2 [ aele e oy, @90vi6@  aon)
Iml'm/
In the following, we will need these integrals:
B = [ 49 (EYin() (168)
B = [ 490 ()(rVYin() (169)
Iim = / dQrVYi  (2) - (rVYi, (F))é: (170)
(171)
We first compute the following integral
Bt = [ A0, ()6 Yin () = (172)

\/1—x2f dep e'm=m")% cog ¢

_ m+m/’ (2l+1)(l_m) (2l/+1 l/_m 27r Z(’m m
-y \/ dn( + m) (' )] / deP" (@) P"(@) | VT=a? ff dcf . m)¢¢s1n¢ (173)

1 v1-— x25m’=mi1
1 o ymam (21+1)(l—m)!(21’+1)(l’—m’)!/ m " ' 5
Il/m’lm - ( 1) ﬂ-\/ 47T(l + m)'471‘(l’ + m/)] . dxpl’ (x)jt)l (.CC) Fiv1 2_ § 6m’:m:tl (174)
TOmm/

which is equal to

+2w5mm,\/ (2 +ijr((ll‘+ ’jn))!!ﬁ’(;j)ﬁ;!‘ m)! / 11 da Py (2) P (a)a § (175)
With the help of the following well known recursion relation
VIZ2@R" = o [ - R (176)
Ji— 2P — %LH (L= m+ 1) —m+ QBT — (4 m— 1) +m)P" Y] (177)
eP = [0 m DPE (4 m) P (178)

21+1



we arrive at

o -1 1, (—m)i—m-1) ((+m+1)(+m+2)] )
Vm/tm 8 2 |7 @i+ nEi-1) et (20 + 1)(20 + 3) m=m
) -1 1 (—m+Di-m+2) (+m+m-1] .
_0’ 2 [T (20 +1)(20 + 3) S (A OYREE YO VAR DI B
0
(l—-m+1D{I+m+1) (I+m)(l —m)
5 I — (S I—=]— T ——— 5m/:m
i (1) l l—l“\/ Q+n@+3) W @i— e+
Let’s define
l+m+1)I+m+2)
l =
al,m) \/ (21 +1)(20+ 3)
U +mA+ 1) =m+1)
flt,m) = \/ 20+ 1)(20 + 3)
and rewrite
L\
Lyt = | —i 3 lal,m)du=iix — a(l', =m")ov=i-1] drmmi1 +
0
| -3 la(l, —=m)éy—141 — a(l',m")0p=1—1] O —m—1 +
0
0
+1 0 | [f,m)dy—ip1 + f(I',m" )0y —1-1] O =m
1

Next we compute the following integral

i = / dQY;, 0 () Vo Yim (B

From W2k paper, it follows that

d 1
Zy =
Tdac fm =9

—% [la(l,—m

d
Tiyvlm =
dy

1
T2
d
"dz

La(l,m)dy—i41 + (1 +1)

1
7. [l a(l, m)5l/:l+1 + (l + 1)

[La(l,—

/ vy,

a(l —1,—m

a(l —1,—m

) (rV)Yim,(T)

— 1)or=i—1] Omr=mt1Yirm: —
Yor—ig1+ (L+1) all = 1,m — 1)6p—1—1] Smr—m—1Yirms
— 1)0p=1-1] Oy =ms1 Yo +
m)oy—ig1 + ([ +1) a(l = 1,m — 1)6p—1-1] Smr—m—1Yim

i/lm - [ l f(l7m)6l’:l+1 + (l + 1)f(l - 17m)6l’:l—1] 6m’:m5/l’m’

16

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)
(190)
(191)
(192)

(193)



It is easy to prove the last term

d

r—Y, = (-1)™

dz

20+ 1)1 —m)! ime

(1—2%)L P (a) =

20+ 1)1 - m)!eim¢
dx

4r (1 +m)!

= (-1

=({+1)

47 (1 4+ m)!

(l—m)(l+m)Y I (I+m+1)(—-—m+1)
@ +1)—1) 7

2l+1

(20 + 1)(20 + 3)

Y2+1,m

[+ 1)+ m) P, (2) = 10— m+ V)P =

17

(194)

(195)

(196)

The x,y components are a bit more challenging. Due to Wigner-Eckart theorem, we know the dependence on m,m’.
The dependence on [,!’ can be either found numerically, or analytically using several recursion relations.

The result for I2 is

2 _ .
Il’m/lm - —1

1
— [—l a(l,m)él/:l“ — (l + 1) a(l’7 —m’)él/:l,l] 5m’:m+1 +

2

1 o

5 [—l a(l, —m)5l/:l+1 — (l + 1) a(l ,m )(Sl/:l,l] Om/—m—1 +
0

+1 0 | =L fUm)oy=ir + (L + 1) f(U,m")or=i-1] dmr=m
1

We can write both integrals in a common form, namely,

1
IZT/Lm’lm = Cny a(l7 m) —i
0
1
—dp, |a(l',=m') | —i
0

where

-1
Omr=mi1 +all,=m) | =i | dmmm1+2f(l,m)
0
—1
5m’=m+1 —+ a(l',m/) —1 5m’=m—1 - 2f(l,7m/)
0
1
cii=3 dig= >
l+1
Cog = —% dgy = 5
I-1H(I+1
C:))7_(z;r2)d,:( )2(+)

= O

_ o O

6m/=m

5m '=m

Oy —141

Opr—i—1

We also defined here I3, which gives kinetic energy operatore integrated over the sphere of the MT-sphere.
In the code, we use real spheric harmonics ¥;,,+, which are related to complex spheric harmonics by

1t ,
Yim = (-1) T’O(ylm + 1Yim—)
1+ 6, )
Yi-m = \/ T’O(ylm — iYlm—)

(197)

(198)

(199)

(200)

(201)

(202)
(203)

(204)

(205)

(206)

In Section. IV E we derive the connection between the matrix elements of the real harmonics and complex harmonics,

and we also derive the matrix elements (y; s/ |T|Yims). Here we just give the final result:
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- %) e (k)
a(lam)(sm =m+1"A15 — + (L(l, m)ém =m-—1 \/ﬁ
<yl’m/i|T|Z/lmi> =Cn,l 5l’=l+1 0
1+0,,—
2 (1) = 5=
_ /A , (1+68,,—0) ’ / , (1%4,,/—¢)
a(l'; —m/)op, =mtl g T a(l’,m")om, :mﬂi\/ﬁ
—dn,1 Or=1-1 0 (207)
(1+6,,—0)
=2f W) =m 5=
and
( T yim=) = + (1) {C S <a(l m)s (AF dm—o) +a(l,—m)s (115m/_0))
Y'm'+ YimT . n,l OU'=l+1 ) m/=m+1 \/m y m/=m-—1 \/m

l:F(Sm:O) (1i6m’—0)>}
—dy g Op—i—1 | a(l', =m0 =mm (7 +all', M0 ] et 208
e R == ) SR

This term has name fomai2 in Wien2k, and is coded in program Force4_mine. This part reads non-spherical
potential Vi g(r) and calls another subprogram VdRho, which performns the integration.

C. LDA+4U Force term

For LDA+U calculation, the LDA+U potential is added to the Kohn-Sham potential, which takes the form

V(r,1") = Vi, Yo, (8)(r = 7)Y, () (209)

mima

We are evaluating the following tem

Fy = =iy fi > (K-—K)Ax (xx|Vixk) Ak = (210)
ik KK’
= —iy fi Yo (K=K AR (ap T Y, [V Y, u? ™) Ak
bk K,K',l
mi,ma, K1, K2
which is
Fy==i)> fi D Vi ') Y (K= K)Aje Ay "ap™ = (211)
i,k l,miy,ma,k1K2 KK’
=S5 > 2 (A Vi, (0 ) (212)
i l,m1,ma,K1kK2

III. LDA+4+DMFT FORCES

The Luttinger-Ward functional is
I[G] = Trlog(G) — Te((Gg ' = G™1)G) + @[G] + Enucteous + 1N (213)
where LDA4+DFMT @ functional is
®[G] = Bulp] + Eaclp] + 2PN T [Groc] = 2P pro] (214)
The stationarity gives

G =Gy + (Vi + Vie)d(r = x')o(r = 7) +6) © (| - |9) Vpe (6] = 0 (215)
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Hence we have

Gyl =G = (Vi + Vee)d(r —t') +9) (£ = Vo) (4] (216)
Gl =iw+p+ V%= (Vi + Vi + Vae)d(r —1') — [6) (2 — Vpe) (4] (217)

We also solve the following KS-problem

(=V2 + Vouet + Vit + Vie) [ixc) = e [vhaxc) (218)
so thet we can write
Gl =iw+ = ) i Vil = 19) (2 = Vine) (0] (219)
In the extremum, I' delivers free energy. Inserting Ga — G, and G~! into the unctional I', we get

F = —Trlog (iw + p — |[vac) i (Y] = 16) (X = Vae) (8]) = Te(Vir + Vare)p)
—TI‘(|¢> (E - VDC) <¢| G) + EH[p] + Ewc[p] + (I)DMFT[Glocal} - cI)Dc[plocal] + Enucleous + /JN (220)

A. LDA+U

First we consider static approximation for ®PM¥7 — ®U and we than call &Y /§G = V7, which is static.
We then incorporate Vi potential into KS-eigenvalue problem, i.e.,

ehPA0i; + (Yirclom) (Vo = V&) mms (b [thi) = HEPATY (221)
and solve
HPAYY B, = epicBip (222)
hence
HPAYY = (BexBY);; (223)
so that
(Wi (1w + = i) €52 (arel — |0} (5 = Vae) (8]) [¥52) = [Bliw + p — ex) BTy (224)

We then have

F=-Tr IOg (Z.(""Y U Eik) - TI‘((VH + VIC)p) - Tr(|¢m> (VU - VDC)mm' <¢m’| G)
+EH [p} + Ezc[p] + ¢U[nlocal] - ¢Dc[nlocal] + Enucleous (225)

Small change of nucleous position dR,, will give small change in F' in the following way
OF = TI‘(G(SEk) — TI‘(((SVH + (;Vzp)p) — 5Tr(|¢m> (VU — VDC)mm’ <¢m/| G) + TI'((VU — VDc)(Sn) + 0 Epucleous (226)

We can arrange the trace in the third term in the following way

—(STI“((VU - VDC)’mm’ <¢m/|G|¢m>) = —5TI‘((VU - Vpc)mm/nm/m) = —5T1"((VU - Vpc)n) (227)
= —TI‘(((SVU — 6VDC> ) I‘((VU — VDO>(5’R> (228)

hence we obtain
§F = Tr(fidex) — Tr((0Vir + 0Vae + 0Vinue)p) — Te((6V — 6Vpo)n Z FIFSR, (229)

This equation is analogous to Eq. 80 in LDA method. We did not yet write definition for Vg as there are two options,
one could include Vi or not. We will exclude Vi; and choose VLD A =Vose + Vi + Vie.
When we vary dey, we have Vi potential included, hence using Eq. 85 we get

Seri = Ay ((Oxwr [H — eilxx) + (x| H — £ildxx) + (x [6T + 6ViEEA + 6(16m) (Vi — Voo mm (dme|) X))
KK’

Ai(230)



Inserting the last equation into 6 F, we get

OF = fac Y Alw ((Oxx|H — eilxk) + (x| H — eiloxk)) Aix +
i K, K’

+ 3 Fie (Vi 0T + 6VEEA + 6(16m) (Vo = Vo) mm: (S| Virc)

~Tr((6Vir + 6Vie + 0Viue)p) — Tr((0Vir — 6Vpe)n Z FAFSR,

Note that the term Tr(§VEE4p) cancels, and we obtain
SF = fac Y Alx (Oxx|H — eilxk) + (xxr |H — £:ldxk)) Aix
i KK’

+ Z fix Wil 6(|ém) (Vo = VD& )mm (b |)|[Yie) — Tr((0Vy — 6Vpe)n)

+ Y fac (Wil 6T ) = > FHFOR,
Note that the first two terms (Eq. 232) still include Vi term. It could be split into the following two terms
Eq.232=) fac Y Alx ((Oxxr| = VZ + VEEA —cilxk) + (xx| — V2 + Vi — &ildxk)) Aik +

i KK’

D fiae > Arxe (6xx [dm) (Vi = VD& ) mm (Sme | xx) + (XK |m) (Vi = VD) mme (| SxK)) Ai
i KK

Now we combinte 233 and 236, to obtain

Eq. 233+ Eq. 236 =) fac Y Al w0 ((xx [6m) (Vo = Voo mm: (6m] X)) Aix — Tr(n(0Vi — 6Vpc))
i KK

which can also be written as

Eq. 233+ Bq. 236 =Y fac Y, Al Aik (Vo = VDo) mme6 (XK [@m) (bme| XK))
i KK’

Finally, we have

F=> fua Y Arx ((Oxx|— V2 + VB —ailxk) + (x| — V? + Vg&4 — eildxx)) Aix +
i KK’

+Z fixe (Vire| 0T i) — ZFfFéRa

+Z fz'k Z A;K/Ai,K(VU - VDC)mm’a (<XK/ |¢m> <¢m" XK>)

i KK’

which gives

OXK/ 1)
B = 3 e Y Adse (G =V VAR el + el - VR ) ) A
L K, K’

oT
- Zfik <¢ik|ﬁ|wik>

~ 3 e 3 gtV Vo s (e ) ()

K,K’
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(231)

(232)
(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)

Eqgs. 242 and 243 look just like the DFT part above. The extra forces due to the U terms are thus given by 244.
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We thus need the following derivative of the projector

% (XK' |Pmr) (Pm | xx) = (i(k + K')xxr — VXK |[rmr) (Dmlxx) + (Xx/| = Vo) (dmlxK) (245)
+ (XK |Pm') (=VIm|xK) + (XK' [Om) (Pm]i(k + K)xk — VXK) (246)
=i(K - K') (xx'|om) (dm|xK) (247)
—((Vxx|om) + (xx [Vom)) (dmlxx) — (xx/|om) (Vom|xk) + (dm|Vxk)) (248)
We then recognize
(Vombac) + (0nlVia0) = [ @190 = § dS diu(r)xac =< bl > (249)

RJ\{T

and use to rewrite the projector variation

5
SR (XK [Pm) (Dm| xx) = (K = K') (xg/|om?) (PmlXK) — < XK |Pmr > (dmlxk) — (XK |Omr) < dm|xx >(250)

Finally, we can write extra LDA+U Pulley forces as

Rty — — Zfik Z i(K - KA (xx[0m) (Vo = VDC)mrm (Dmlxk) Aix (251)
i KK’
+Y fae Y Al < xwrldme > (Vo = Vo) mom (dmlxi) Ai (252)
i KK’
+Z fik Z A;K/ <XK"¢m’> (VU - VDC)m’m < ¢77L|XK > Ai,K (253)
i KK’

Note that Wien2k implements the first term (Eq. 251), but neglects the other two (Eq. 252,253). It would be nice to
check how much difference the last two terms make.

B. Proof that variation can be equivalently done in non-diagonal basis

In this section the LDA Hamiltonian will be HO, i.e.,
Hyox = (x| = V? + Vies|xx) (254)
which is diagonalized by the generalized eigenvalue problem Eq. 81
A Hie A% — A%, O Afie? = 0 (255)
and the LDA+U Hamiltonian in KS basis:
HY = €06 + (Uil dm) Vinrm (dml o) = (€0 + V)i (256)
where V = VU — Vpc.

Note that the generalized eigenvalue problem (such as Eq. 255) has the following properties (for both pairs H,A or
HO AY):

HA = OAe (257)
ATH =cATO (258)
ATOA =1 (259)
ATHA = ¢ (260)

We can also diagonalize the LDA+U Hamiltnonian with a unitary transformation B:

BY (el +V)B = ¢x. (261)
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Using transformation B, we can then also express LDA+U eigenvectors A in terms of LDA eigenvectors A°. We

have

(xx’| = V2 + Vis + |om) Vinrm (] [xx) Aki = Ok Akicki
or

(Hgere + (X |90) (Wil dme) Vinrm (S |05 (Ui xx)) Ak = Ok Akiei
We notice [¢8) = > g Ak, Ixk) hence (x% [v9) = Ox'k A%, and therefore
(H° 4+ 0A°V A°TO)A = O Aey,
We also defined above that
(W] = V2 + Vs + [6m) Vinrm (ml| W0 = (en + V)ij = (Bex B35

which can be cast into the form

A% | — V2 4+ Vigs + [dme) Vinrn (D] Xxc) A%, = BexB'
or

A"HA" = Bey Bt
We multiply Eq. 267 with OA° from the left and B from the right to obtain
H(A"B) = O(A°B)ey

Comparing Eq. 268 with Eq. 264 we recognize A = A°B and H = H° + OA°V A°TO, hence

i) = Y Ixk) (A’ Bk
K

when

|¢?k> = Z IXK) Ag{i
K

Alternatively, we can derive the above identities from the fact that

B'(+V)B=¢
A0t 040 — 0
which immediately gives
BT (AYH°AY + V)B =¢
BIAY(HO + A% 'y A0 A0 = ¢
(A°B)T(H® + 0A°VA"T0)A°B = ¢
(H° + 0A°VA’T0)A°B = O(A°B)e

Now we check a small variation of the €% by varying the secular equation
H°A° = 0A%°
Note that this equation is always satisifed, hence variation vanishes

(SH*)A® + HO(§A%) — (60)A%° — O(6A°)® — 0 A%< =0
AT (SH) A + A°THO(5A°) — AT(60) A% — A%TO(5A%)® — A°T0 A% =0

We note that A°T0OA° = 1 and A°THY = 94970 hence
6% = AO(SHO)A? — AT (SO) A" + 2AYTO(5A%) — AYTO(5A°)e0

(262)

(263)

(264)

(265)

(266)

(267)

(268)

(269)

(270)

(277)
(278)

(279)



23

Note that although £° is diagonal, its variation is not. However, if only the diagonal components are needed, i.e.,
(0€%)4; then the last two terms cancel, and we get

(6%)s = (AT (SH®) A" — A%T(60)A%%),; (280)

This equation is identical to Eq. 82, however, now we also have generalized variation of (55%— in matrix form.
We are now ready to take the variation of LDA+U functional Eq. 220

F = —Trlog ((iw + p — ep)1 — (Yl dmr) (Vi = VD) mrm (Sm ) — Te((Vir + Vae)p)
~Tr(|¢) (Vo — Vbe) (8 p) + Ex[p] + Esclp] + ¢V [n] — ¢°°[n] + Bnuctcous (281)

We get

OF =Tr (G(s(aﬁ + (<"/}?k|¢m’> (VU - VDC)m’m <¢m|"/}?k>))) - Tr(((SVH + Ve + 6Vnucl)p)
—Te((6Vr — 6Vbe) (dlpld)) — Y FAFoR, (282)

First we are going to concentrate on the first term, which comes from derivative of logarithm
SF° = Tr(G6H).
In matrix form, we have
SFY = Tr(pd (s + V) (283)

We also know that €® +V = BeB' and hence p = Bp?B', where p? is density matrix in diagonal basis. The latter is
important for some permutations of terms we want to do. We get

6F° = Tr(Bp?BT6(° + V) (284)
We are first going to repeat the derivation from the previous section, which transforms H into diagonal form:
§F° = Tr(Bp?BT§(BeBY) (285)
which gives
SF° = Tr(p¥0e) + Tr(p?BT6Be + BpledBT) (286)

Notice that both p? and ¢ are diagional matrices, hence they comute, hence we can write the last two terms in the
form Tr(p?(BT6B + dBTB)e) = 0 because Bf B = 1 is always unitary and its variation has to vanish. Hence we have

SF° = Tr(ptoe) (287)

We could of course derive this equation directly from variation of Green’s function in diagonal form §F° = —§In(iw +
1 —€), but we wanted to check that the two derivations give identical results.
We next use Eq. 280 to get

SF° = Tr(p?(AT(GH)A — AT(60) Ag)) (288)

notice that because p? is diagonal and we have Tr, only the diagonal components of Eq. 279 are needed. We also
know from Eq. 264 that H = H° 4+ OA°V A% O, hence

SF° = Tr(p(AT(6H®)A — AT(60)Ag)) 4 Tr(p? AT6(0A°V A°TO) A) (289)

Next we notice that OA°V AT O is (X' |m:) Vinrm (dm|xx) (see Eq. 263), and when combined with —Tr(nmm/dVinrm)
from Eq. 282, we get

SFO — Tr(mm 0Virm) = Tr(pl(AT(SH)A — AT(50) Ae)) (290)

= Tr(p*(AT(SH")A — AT(50) Ac)) + Tr(pf; Alic, Vinrm AxciS ((x3¢ [ $mr) (Dmxkc))) (292)

_|_
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The last term is exactly the additional LDA+U force that we derived in previous chapter Eq. 244.

This was just equivalent derivation (using matrix notation) of the derivation from the previous chapter. But now
we want to see that variation in basis, which is not an eigenbasis of H? + V, also leads to the same result. This is
important in DMFT since H® 4 V basis is frequency dependent, while H° basis is not, and we want to do most of
the calculation in frequency independent basis.

Notice that in DMFT transformation B is frequency dependent B,,, hence the expression in diagonal basis would
be

SF° — Tr (G 0% mim) = Tr([B,G%BI(AY(§HY)A%)) — Tr([B,e,G% Bl | A% (60) A°)
+ Tr([(BuGLBL)is S m Afke 6 (x|} (Sl x3¢)) Ak:)

In particular, the last term would require
1
(WE)ijmm = 3 > (BuGEBL)yT (293)

We are hoping to find better expression in non-diagonal case.
The challenge now is to show that variation of §F° leads to Eq. 289 even when we do not transform to eigenbasis.
We return to Eq. 284, and write

SF = Te(BpBT6(° + V) = Te(Bp BT (A"T(6H)A® — A% (50)A%° + 2 A°TO(6A%) — A°TO(6A")E%)) + Tx(Bp“BT6V))
Notice that we had to use the non-diagonal form of e (Eq. 279) and that diagonal form Eq. 280 would not be
sufficient here.
We next notice that A°B = A and BTA°t = AT hence

§F° = Tr(p? (AT(6H?)A — AT(6O)AB'e°B + B'e’BATO(5A%) B — ATO(6A°) BB B)) + Tr(Bp*B'sV)) (294)
Next we replace Bfe®B = ¢ — BfV B therefore
SF° = Tr(p? (AT(6H®)A — AT(60)A(e — B'VB) + (¢ — B'VB)ATO(5A%) B — ATO(6A°)B(e — B'VB))) + Tr(Bp*B'sV))
and now we notice that both ¢ and p? are diagonal matrices, hence the third and fourth terms have parts that cancel,

ie., Tr(p?(eATO(5A%)B — ATO(6A%)Be) = 0, hence

SFY = Tr(p? (AT(0H")A — AT(50)Ae)) (295)
+ Tr(p" (AT(SO)AB'VB — (B'VB)ATO(6A°)B + ATO(§A")BB'V B)) + Tr(Bp*BYsV)) (296)

Eq. 295 is already in the required form of Eq. 289. The second part Eq. 296 needs some further manipulation. We
write

Eq. 296 = Tr(Ap? Al ((5O)ABTVBA*1 — AT'BIVBATO(5A4°)BAT! + O(MO)VBA*I)) + Tr(Bp?BT6V)) (297)
and we use ATOA =1 and ABT = A% and BAT = At
Eq. 296 = Tr(Ap? AT ((00)A°VAYTO — OA°V AYTO(5A°)A%TO + O(5A°)V AYTO)) + Te(Bp BT6V) (298)
Next we vary ATOA = 1 to obtain
AYTO(6A%) = —(§A°T)OA° — A°T(50)A°
hence
Eq. 296 = Tr(Ap? AT ((60)A°VAYO + OAV ((6A°T)O + A"1(50))A°A°TO + O(s A°)V A1 O)) + Tr(Bp” BT 5V(299)
we next use A°A°TO = 1 (which is a consequence of A°TOA® = 1) to obtain

Eq. 296 = Tr(Ap? AT ((50)A°V A%TO + OAV (§A°T)O + OA°V A% (50) + O(5 A°)V A°T0)) + Tr(Bp? BT5V') (300)
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We also notice that Tr(Bp?BT6V) = Tr(A°Bp?BT A°TO A%V A%TO) = Tr(Ap? ATOA°SV A°TO) which gives
Eq. 296 = Tr(ApAT ((60)A°VA"O + 0A°V(5A°T)O + OA'V AT (50) + O(6A°)V A"TO + 0A°5V A" 0))

= Tr(Ap?ATs (0A°V A°T0)) (301)

hence we conclude
SFY = Tr(p® (AT(6H)A — AT(60)Ae)) + Tr(Ap?ATs (OA°V A’TO)) (302)

This is equal to Eq. 289, hence we proved that variation in the basis of diagonal H or diagonal H leads to the same
result.

C. LDA+DMFT

We first diagonalize the LDA+DMFT Green’s function. We write self-energy in static Kohn-Sham basis 1), in
which the LDA+DMFT eigenproblem is

€26 + (V7 |5(w) — Vpev?) = (BFew,BL)i; (303)

This defines the frequency dependent transformation B, between the DMFT and DFT eigenbasis, which is not unitary
(because H° + ¥ is not Hermitian). The Green’s function in the diagonal basis is then simply given by

1

Gl(iw) = ——— 304
(iw) FrE— (304)

For convenience, we also define the following matrix
(Vio)is = (7 12(w) = Ve lvl) (305)

We will also need explicit formula for embedding self-energy into Kohn-Sham basis
(Vw)ij = <¢?|E(W) - VDC|¢?> = <¢?|¢m> i:mm/ <¢m’|¢?> (306)

where imm/ = Emm/ (w) - VDC,mm/'
For DFT Hamiltonian H° we have eigenvalue proble

g% = AT HOA° (307)
which together with Eq. 303 leads to the following LDA+DMFT eigenproblem
(H° + 0A°V,AYTO)AR = O Ale,, (308)

where AF = A°BE. Similarly, AL = BL AT
We vary eigenproblem Eq. 308 to get

(6H®) AL 4+ 5(0A°V,A°TO)AE — (50)ARe,, — OALSe, + (H® + OA°V,A%T0)(SAR) — O(5AF)e, =0 (309)
and multiplying by AL from left leads to
AL(SHOY AR + ALS(0OA°V,AYTO)AR — AL(50)ABe,, — ey, + e, AEO(BAR) — ALO(5AR)e, =0 (310)
which finally gives
be = AE(SHO) AR + ALS(OA°V,APTO)AE — AL(50)ARe, + e, ALO(GAE) — ALO(5AF)e,, (311)

Notice that when only the diagonal components of the variation are needed, the last two terms cancel as ¢, is diagonal
matrix

(0cw)is = (AL(SH) AR + ALS(0OA°V,A"TO)AR — AL(50)AEe,) s (312)
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To derive a small variation of DMFT free energy, we start from the expression Eq. 220.

F = —Trlog (iw + p — [vhisc) €57 (irc] = 16) (5 = Viae) (8]) = Te((Vir + Vize)p)
—TI‘(|¢> (Z - VDC) <¢‘ G) + EH [P] + Ezc[p] + ¢DMFT [Glocal] - (bDC[plocal] + Enucleous + ,uN (313)

which can now be rewritten as

F = —Trlog (iw + p — £u) = Tr((Var + Vie)p) — Te(2 (81 G0)) + En[p] + Euelp]
+¢DMFT [Glocal] - ¢Dc[plocal] + Enucleous + /J/N (314)

The variation then gives

OF = Tr(G%e,,) — Tr(GlrocadX) — Tr((6Vig + 0Vie + 0Viuet)p) — Z FHFSR, + uoN (315)

The charge neutrality is always enforced, hence §N vanishes. G? is the Green’s function in diagonal basis, i.e.,
G% =1/(iw+ pu — &,). We then insert the diagonal components of variation (¢, )s;, determined in Eq. 312, to obtain

OF = Tr (GYALGHO)AL + ALS(0AV,A"0) AL — AL(50)Afe,)) — Tr(GiocatdX) — Tr(6Vicsp) — > FAVSR,

[e3

We then split the eigenvectors into frequency dependent and independnt parts AZ = BL A% and AR = A°BE and
obtain

§F = Tr (BEG'BL AT (6H®)A") + Tr (BEG?BL A" 6(0AV,A°T0)A°) — Tr (BEe .G'BL A% (60)A%)  (316)
7TI‘(GZOCQZ(SE) — Tr(5VK5p) — Z F(fIF(;Ra

(e

which can also be cast into the form

0F = Tr (BEGBL A (5H®)A®) — Tr (Ble,G'BL A (50)A%) — Tr(0Visp) — > FHTSR, (317)
T ((BEGBE)i; A% 6 (x1¢/16me) Sy (6mlxxc)) Ak, ) (318)
v ((BEGUBL)i; A%k, (o |6mr) 6(Smrm) (Smlxic) A, ) (319)

where we used
Glocat mm' = (Om|G|m) = (dmlxK) (AngAﬁ)KK/ (x| Pmr) = (PmlxK) (AOBdeBf;AOT)KK/ (xx'|Pms) (320)
We thus obtain

0F = Tr (BEG'BLEA"(6H®)A°) — Tr (BEe,G*BL A% (50)A°) — Tr(Vksp) — Z FHESR, (321)

+Tr ((BEGBE)i; Al ASeiEmemd (Cacr [ 01m) <¢m|xK>>) (322)

We next define the following quantities

1 1
DMFT _— = BR BL — i 2
p ﬁz “’iw—l—,u—aw . =BwB (323)
YPMET — BL = B (we) B = Bw, B 24
(pe ;w ZW+M—€w " =B (we) B we B (324)
1
G(iw)ij = (Bjj’,Bf,) (325)
W+ [ — Ey ij

The first line decomposes the DMFT density p”?F7T by unitary transformation B to produce diagonal matrix of
weights w, which is possible because pPM¥7 is a Hermitian positive definite matrix. The second equation determines
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DMFT ig hermitian. Finally, the last

an auxiliary off-diagonal matrix of energy we, which is also Hermitian, since (pe)
R DMFT

equation in Eq. 324 determines another unitary transformation B which diagonalizes Hermitian matrix (pe)
Using the above defined quantities, we get for the variaton of the free energy:

OF = Tr (pPMFT A (SHO)A%) — Tr ((pe)PMFT A (50)A°) — Tx(8Viksp) — Y FaFoR,

«

v (AR G09)15 ASker S ()3 (i |6} (Dmlxc)) ) (326)

We then derive the variation of LDA Hamiltonian and overlap matrix elements using either Krakauer’s formalism
(Egs. 525, 526), or Soler/Williams formalism (527, 528, 529). In both cases we get

00 . G ox
S = 0K~ K Gl — 48 e (327)
(5 X ’ T X . &~k ~
% = (K~ K') (xx|T|xx) s — fds Nio Tk (328)
(67
0 {xx'|Viks|x . =2 . - %
Rl PsDOC) i — k) el Vieshac) i — 08 e Vs e + (e o hae) + (e [9Vics )
(329)
Notice that in Soler/Williams formalism we would use Gauss theorem to write an equivalent form
00 . ' - -
R. i(K = K') [(xk [XK) pr — (X! [XK) pr7] (330)
0 (x| Tlx) .
D00 ITh) _ ¢ ) [y Thae)aer — (BT 1) (331)
(5 XK’ V X . - - 5V
Dlae sl — i - k) (e Vics bacharr — (i Vies K aor) + o R )
+ O [VVisIxk) i — (X [VVES XKD (332)
Using Krakauer form, we obtain
SHO ., . SV LDA
S = (K=K Qe — §dS e e + el 4 )
« MT o
— | dVEEIV (o) + ¢ dSxie VieE e (333)

MT MT

For the last two terms we used integration by parts to turn [ x5 Xk VViks into — [ VksV(xj Xk) plus the surface
term.
Slight reshuffling of terms then gives

SHO 0Vks X
SR = (0K =K Qe ad) wr + (el had) = [ drVies Ve Geieonsd)
o (o MT
- dS X TXx + dS [ Vs Xk — X Vics XK (334)
MT MT

The last term can be neglected if expansion in the MT-sphere goes to large enough cutoff-l,,,,, as xYx becomes
continuous across the MT-sphere. This term is neglected in Wien2K.

As explained in previous sections, in the interstitials we use the symmetric form of the kinetic energy operator, i.e.,
Vi - Vipi. In the MT-part, however, we use more common form of 9y (—V?)iy. Consequently, there is an extra
term generated on the surface of the MT sphere, which takes the form

(e T = Qe = Placdaer + § - dSie Ve (339)
T
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This finally gives

6H0 ; / 2 . / & x 6VI%EA
= i(K - K') (x| = V" + Vks|xk) yp +i(K - K') dSxx Vexx + (xx'| IXK) (336)
R, MT R,
— / dSTVKSvr (X;('XK) — (k + K/)(k + K) % dg >~(>Ik{'+k>~(K+k + % dg [X;(/VKSXK — )Z;(’VKSXK]
MT MT MT
00 , , 2 ow
= (K - K') (xx'[xx) prr — dS Xk XK (337)
R, MT
Notice that
p(r) = (r|vg) pPM I (W Ir) = (rlxk) Ak el M A% (v [r) (338)
hence
SV LDA SV LDA
DMFT 40t KS o\ _ KS
T (2T A (urel T ) Al ) = Tep ) (339)
Tr <p£—MFTA?I<, / &rVics Ve (X 41 XK+k) A%{i) = / d3rVigs(r)VpPMET (v) (340)
MT MT
For convenience, we define the following quantities
Righ = i(K —K') (x| — V2 + Vics [x<) vy (341)
R@K = (k+ K')(k + K) j{ d§)2}‘</(r)>ZK(r) (342)
MT
RY) = i(K - K 7{ dSxi Viexk (343)
MT
R = jl{ dS [Xic Viesxx — Xic Ve sXk] (344)
MT
e = i(K = K) {xac [Xk) arr (345)
Ph=f  dStiow) (346)
r=RyT
(347)
so that
SHO SV LDA
= R —R® 4+ R® 4 RW — [ d®rVis Ve (Xie xk) + (x| 52— xk) (348)
R, MT R,
00
— 0 _ N2 349
R, ¢ ¢ (349)

Notice that in Soler/Williams formalism, we would get a term like (K — K’) (Yk/|T|Xk) 5,7 Which can be shown to
be equivalent to R(?). Also the term i(K — K') (Yk/| Xk ) y;p is equivalent to Q(2).
We can then evaluate term by term of §F. The first term is

HO
Tr (pDMFTAOTgRAO) = Tr(pPMFT AT (RMW — R® 4+ RB) 1 RW)A%) 4 (350)
(0%

DMFT(SVI%EA 3 LDA DMFT
+ T(PMIT IS [ gy ERA ) VP M )
« MT

The second term is

Tr ((pE)DMFTAOT(;;;)A()) — Tr((pE)DJ\IFTAOT(Q(l) _ Q(Q))AO) (351)

The variation of the DMFT projector

b
SR Xk [bmr) (Dm| XK)
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is a bit subtle. First, the DMFT projector is zero outside MT-sphere, hence 617/§Ra =0 and V = 0 outside MT-
sphere. We move the projector rigidly with the MT-sphere, hence inside MT-sphere we only have §V/éR, = —VV.
We then use formulas derived in Eq. 525, which in this case takes the form

) OXK/ ) .
(aelV i) = (GeEIVia) -+ baclVIges) = (aelVViadur + § dSxicVa (352
R MT MT MT
= i(K = K') (xx' [VIxK) prr (353)
We just derived that
0 .
s (0 [0m) (Ol xac) = 1K = K) faacr o) (Gmc) (354)
We now insert all these terms in Eq. 326, and obtain the Pulley forces
F(I;ulley — _Tr(pDMFTAOT(R(l) _ R(2) + R(3) + R(4))A0) + Tr((pE)DMFTAOT(Q(l) _ Q(Z))AO) (355)
[ drVies ) VoM (r) = T (AR Gliw) i ATk i(K — K') (e dm) S (i) (0mliac))  (356)
MT
We then use Eqs. 323 and 324 and introduce the “DMFT” coefficients
A= AB (357)
to obtain Pulley forces in the form
FLulley — _Tr(wAf (R — R® + R®) 4+ RWYA) 4+ Tr((we) AT(QW — Q) A) (358)
[ Vs TP () T (ARGl AT (K~ K) Qo) S (i) (6nisc)) (359
MT
This can also be cast into the form
Fluley = — 3" Al i(K = K) (xe [(— V2 + Vies)w M7 65 — (w8)i1XK) pyp Ak (360)
1,7, KK’
+ > Al [k + K (k + K)wPMITs;; — (we);;] Ak ?f dS ¥ w (T) Xt (1) (361)
i KK/ Ry
Z wPMET Z Al (K — K/)Asz{ ngii+K/ (r)Vexk+k (r) (362)
KK’ Ryr
+ / Vs (1) VpPM T (r) (363)
MT
2D AkG () AT i(K — K) (e |6me) S (i) (fmlxxc) (364)
iw,ij, KK’
— Z’wDMFT Z ATK,AKz% dS XK'VKSXK — XK'VKS'XK} (365)
KK’

Notice that the last term is neglected as it should be small when [,,,, is sufficiently large.

D. Implementation of Eq. 360, symmetric part

This is implemented in Forcel DMFT.
Let’s start with the part containing spherical symmetric Hamiltonian

—i Y wPMIT(K - K A (xe [(— V2 + Vies) IXk) rr Ak (366)
i, KK’
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We first repeat Eq. 67, which gives spherically symetric part of Hamiltonian in the MT-part:

sym . 1 *
<XK/| - VZ + VK%JS (T)|XK>MT = alm almE + b blm <ul‘ul> 2 [alm b blm alm] +
/% 1 ’ y /g
+ dn By (upoluro) + i[allfn Cln + o Al (B + o) (uluro) +
1 , .
+ Q[sz bE, + i el | [(urolw) + (B + By) (uroli)] (367)

Clearly, we can split the sum over K and K’ into two indepedent sums which take O(N) time.[We want to avoid
O(N?) scaling, since there are very many number of plane waves K].
We first define (compute) the following quantities

Qi lm = Z Ax; afs, (368)
K

At = Z K Ak; afy, (369)
K

which take O(N) time to compute. Here Ak ; are eigenvectors corresponding to the Kohn-Sham energy e;. We
assume corresponding expression for b; i, Ci.im, Biim, Ciim-
The quadratic terms of the form aj,,a;, become

> (K — K Ajcsaps, af A = a1 Aiim — A 1 0iim = 21 Tm{a A im } (370)
KK’

while those of the form aj,,biy, + b, aim become

1 - R
Z (K K/)AK’ [a’lm*b bﬁ’t*aﬁl]AKl = 5 [a;:lmBi,lm - Az l'rnbZ Im + bz lmAl lm — B;‘,lma”i,lm] =
KK’

=1 Im{a;lm[}%lm + b;lm"zi,lm} (371)
The term with H? can then be expressed by

Z (K - K')Aje, (x| — V2 + VR (r ) IXK) prr Axi =
KK’

iIm { (2@1 lm v+ b;k,lm + C;lm(Elt + El/) <u|uLO>) A’i,lm} +
T { (0] + 207 0 B (alia) + €l urolun) + (B + By) wrolia)]) Brim | +

+ ilm { (@7 (B + By (uluro) + ] [(urolw) + (Bu + By) (uroli)] + 2By € 1, (uroluro)) dlm} (372)
The overlap term is

i Y (we)y(K - KA (xir[xi) arr Ax (373)
i,§, KK/’
and the overlap of augmented PW functions is
Oar [Xx) arr = ais, i, + bl bis, (i) +
+ el el (uroluso) + lay, e, + iy, alf] (uluro) +
+ [ bl + bl el (uroliv) (374)
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hence we obtain

> (we)i; Y (K —K') A, (xxr IXK) pyr Aki =

ij KK/
21Im ’LUE ij ] Im + C_7 im <ULO|U>) _‘ i,lm +
+ 20m Q> (we)ij (5 1 (liu) + € gy (urolin)) Bism ¢ +
+ 2ilm U}E ij j Ilm <U|ULO> + b] lm <ul|uLO> + cj lm <uLO‘uLO>) 5 Jm

and the final result becomes

F)FY = — 3™ Al (K~ K) (e |(= V7 + Vies w7615 — (08) 1] xxc) Axi =
i,5, KK’

Z Im { <wi [Za;lmEl, + i im + Cim (B + E) (u|uLo>] — ZZ(TJE)ij [a;,lm + Ciim (u|uLo>]> fi‘“m} +

J

J

+ Z Im { <wi [aF 1m + 207 1 By (Gultn) + ¢ ym [(urolu) + (Eu + Ev) (uroli)]] — 22(1775)1';' (67 1m (i) + €5 im <ULOul>]> gz‘,lm} +

+ > tm{ (wi [0l im(By + By) (uluro) + biam[(urolus) + (By + By) (urolin)] + 2B, ¢ (uroluso)] -

i,lm
-2 Z(@E)U [0, 1m (uluro) 4 b] im (W |uro) + ¢ im (uLouLo)O C_;,lm} (375)
J

This force is called fsph.

Note that ./f, B and C are called aalm, bblm, and cclm.
In Wien2k, this is implemented in function fomail. Also note that (u|u) = pei, (uro|u) = pil2lo, (upolt) = pel2lo,

(uroluro) = pri2lo.

E. Implementation of Eq. 360, non-symmetric part

This is implemented in Force2.
The non-sperically symmetric part of Eq. 360 takes the form

F(2)0m e = =) wi Y Al (K — KAk (xxr|[Vies ™™ (0)Ixk) pyp (376)
i K,K’

In file case.nsh, we read non-spherical symmetric potential, which is given in the following form

Kilimikalams

Vs = [ 7Y, ©U VS @)Y 6) (377)

The data in case.nsh contains the following matrix elements

(u|V]uy — tuu (378)
(u|V]a)y — tud (379)
(|V0|u) — tdu (380)
(w|V]u)y — tdd (381)

(382)



To evaluate the term, we substutute the definition for yx to obtain

3 (K - K) Al (xir [V i)y Ak =

KK/
§ / § k1,K' ) k1 |y n—sym ko, K Ko

(K K )AZK/ 1/117711 Q. m, ul1 |V |}/}2m2 E A omy Uiy >AZK
KK’ 1 o2

which simplifies to

3 (K - K) Al (xxr [V i)y A =
KK’

a*KI,ZAK:27l _A*Kl,ZaKQ,’L _
limy Y Moms VE1lima,kalame limy Yoms VE1lima,kalomae =

Kilimi,kalame
. *K1,1 gK2,1

2iIm E a’llm’l lz'f’?’LQ VK111m1,H2l2m2

r1limiy,kalamse
hence, we have
Pulley __ § ) E *£1 Ka2,l
2)04 = wy 2Im {a’llml Vﬁ111m1 Kaloma 127;12}
i rk1lima,kalamsa

Implementation builds the following quantity

I l *K1, z
afac(H% 1ma, 2m2 allml H1l1m1,r@2l2mz

and evaluates

2)Pulley — Z fi Z 2Im[afac(kz, limq, lgmg)Af;,;m}

lima,lama, k2
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(383)

(384)

(385)

(386)

(387)

(388)

(389)

(390)

Note that this force has name fnsp. Also note that xf, IS?,CT are called aalm,bblm,cclm and matrix elements of V

are called tuu,tud,tdu,....
Within Wien2k this is implemented in fomail.

F. Implementation of term 361

Next we discuss implementation of Eq. 361:

F)Ly = 3 wPMPT(AB)y o (k + K — G)(A"B)ici(k+ K) RS, / a0

IK.G cell
N zGr
= Y (AB)esl@E)(ABlic o, By [ 45—
i, K.G cell
or
1Gr
P = S wPMIT(AB)ic g, (K +k - G)(ABcs (K + Wy [d0f—a
Ke ' Vel
- Z A, ( (WE)B )zyAK G]R]\/[T/dﬂ
i, K.G cell
or
eiGr
F(4)fuley = 3= wPMIT(AB)g (K +k— G)(A°B)k.:(K + k) R}, /dQV—e}
I K.G cell
zGr

- Z AKz pe) DMFTAK GJR]WT/dQV
i K.G cell

(391)

(392)

(393)

(394)

(395)

(396)
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We next diagonalize the density matrix

(pe)PMET = By B (397)
and simplify

iGr
F(4)Pulley — Z wPMT(AB)k g (K+k— G)(A’B)k.i(K + k)R p / dQ;—é} (398)

i, K,G cell

. . zGr
- Y UBiwes (B o, Rhyr [ d05—a (399)

i, K,G ce

The convolution in K needs quadratic amount of time (O(N?)). By using FFT and turning it into product in real
space, it takes only N log(N) time, hence we will use FFT for the following quantities

Xi(r) = (A°B)k i(K + k)e'¥* (400)
K

Yi(r) = > (A°B)k ie’®* (401)
K

The inverse FFT should then be used to obtain aternative representation for convolution

ulle dgr —17 ok v * zGr
pper— [ T2 IR i) - ¥ e Y R [aoi—a (402)
Finally, one can check that
iGr > G iGr
dQe*™Te, = 4 €] J1(|G|Rpr)ie* =T (403)
In the code we compute
. d37, —iGr[ v * *
ekink = 726 (X (r)w; Xi(r) — Y (r)w. ;Yi(r)] (404)
which is computed in 12main.
The final part of this force is implemented in Force_surface.
G. Implementation of Eq. 362
Next we consider Eq. 362, which is
F(3)Pulley — ZwDMFT D Algi(K — K') Ak; f dSXix (t) Vexicrk (r) (405)
KK’ Ry

We know that the therm should be real, therefore we will symmetrize it to show this explicitely

@5 = 23w 3 Alyi(K - K A f ANt 11e(1) Viexac (x) + Xic1e(1) Ve ()] (406)
i K, K’ =Ry
which is equal to
F ()L ey = sz S UK = KD A Ry 4 (e 0) e+ acsn(r) 5 ())(407)
r=R B + or or +
k,i KK’ MT
and inserting expression for y we get

F(3)0utey = E wy E i(K — K') Ak Aki Rip E alm KU a’lm K] +alm KUy alm Koy (408)
k,: K., K’ l,m,k' Kk
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and summing over K and K’ gives
Pulley K % K
F(3), E szMT E [az lmul zlmul +Az lmul a1 lmul - zlmul az lmul —aj lmul i,lmull409)
lm,k" Kk

which can be simplified to

F(3)'v = R} Tzwl Z Im[a zlmul zlmul + AY, Am Ul a’z Font'y] (410)

l,m,Kk’ K

We can then define the following quantities

kinfac(1,ilm) = af,,uf (Rur) (411)
kinfac(2,ilm) = ZK af | (Ryr) (412)
kinfac(3,ilm) ZAZ i1 (Rarr) (413)
kinfac(4,ilm) = ZAi’lmul (Rr) (414)
and write
F(3)Pullev — p2 . sz Zlm (kinfac(l,ilm)) kinfac(3,ilm) + kinfac(4,ilm)(kinfac(2, ilm))*] (415)

k,i l,m

This part of the force is named fsph2 and is coded in fomail within Wien2k, and in Force3 in my code.

1. Alternative implementation using plane waves

We are free to choose any form of the kinetic energy, either V-V or —V?2. We could choose the form to be —V? and
then we would get the same term computed with the interstitial basis functions. The problem is that these functions
are not continuous and hence the left derivative is different that the right derivative. The best way out is than to use
the average of the left and right derivative, hence we will compute the same term with interstitial charge, and then
average over both terms.

The Eq. 362 using plane wave functions is

1 . O % ~ =~ ~ %
F(3)§u”€y = 73 sz Z AJ,'LK’Z(K - K/)AKij{ R dS[Xk/ 41 (T) VeXk 1k (1) + XK4+k(1) VXK 41 (1)] =(416)
i K,K’ r=HRmT
1 > ~
= —5 XZ: w; I{z}:{l AIK’Z(K — K/)AKi %;_RJMT dSV ( K'+k( )XK+k(I‘)) (417)

If we go one step back and check derivation of kinetic energy part, Eq. 328, we see that replacing V? in the interstitials
with V - V would generate a term

dS%i (V)% = ¢ dSVii - Vik — ¢ dSV - (Xic Vik) (418)
MT MT MT

which, when inserted into Pulley force, leads to a term

1
P u Y Al A 74 A5V - (X Vi) > —5 Do wi Y Al A 7{ 45V - (Vi Vix + Tk Vi) (419)
i KK i KK
The last simplification is obtained by symmetrizing the term, as force should be real. We can notice that this

expression is equivalent to the above derived Eq. 416, however, now we can rewrite the integral into even a simpler
form

— 1 T a2/ % = _ 1 T2 ~
F= 5 Zwi ;AiK/AKi %MT dSV* (X XK) = -5 dSV2p(r). (420)

i MT
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We will show below that both forms Eq. 417 and Eq. 420 lead to the same expression for the force.
Starting from Eq. 417 we get

1 . ’ — 1 . 7
PO = 1Y Y Al (K - K KR g RO
4 K, K’ r=RumT cell
or
1 . = 1 .
F(3), ' = 5 > Ax g widki G ¢'CRe f S - G——e'S" (422)
i K,G r=RuyT cell

We then recognize the density in the interstitials, which was previously computed by FFT

- 1 X
o =17 D Ak giwidki (423)
cell i Kk
Our force then becomes
1 . R ,
F(3)fuey = =3 " G 'R 7{ S - Ge'S* (424)
2 G r=RymT
It is straighorward to show
[ a9 Gt = amiji((GIRurml G (425)
hence the force is
R2 ;
F(3)Fulley — % > hairji(|GlRarr )i’ SR |GG (426)
G
For alternative derivation we start from Eq. 420 and write
1 - 1 - , , R? , .
F=-- dSV2p(r) = = }[ dSY " GPpge'CRee’Cr = ML N " G2 g el GRe / dQe’Sre, (427)
2 Jur 2 Jur G 2 S
It is easy to show that
- 1Gr . . G
dQeye = 4TI"L.]1(GRMT)@ (428)
hence we obtain the same expression
Rir < iGRa ;.
F=—T > pae’SRedrij (GRyr)|GIG (429)
G

[It turns out that this formula does not give the same value as its implementation with augmented plane waves
(inside MT sphere) Eq 410. I do not understand why. Misterious!].

H. Implementation of Eq. 363

L = [ dViesTo) = Y [ Vi 0 (6 (i) () (430)

MT Imsl’'m’

Here we use the real spheric harmonics, introduced in Kurki-Suonio, which are defined by

1 2
it = e (Vi + (=1)™Vin) = 4 | ————(—1)"ReYip, 431
Yim+ 2(1+6m70)( 1, (=1)"Yim) 1+5m70( ) f (431)
S (—1) Vi) = (| —2 (—1)™ mY] (432)
m— — —-m — = m) — - myiym,
v 20+ 0mo) . 1+ 0mo :
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Notice that in Wien2k Y},,’s are not defined in a standard way as in most QM textbooks, but are defined as in classical
mechanics with an extra (—1)™. Hence, in Wien2k, one needs to add (—1)™ to the above definitions.
The operator V in spheric harmonics is

o sing [ s0coso) [ TIme o 1

= “r— — 1 _— = HT_— — 4
Vi=e or + cos f'sin ¢ 0(cos 0) + rsinf cos ¢ ¢ “or + rv% (433)

sin 0

The last form emphasizes that V has the radial part and a angle part. Using this decomposition, we can write

F(5)Futev = / ErVgs(r)Vp(r) = > / drr? Vi s ( )dp “;l“( r) / AWy s (B)€ryims () (434)
Imsl’'m’s’
+ /O dry? Vo i 1) [ 20 (6 Vi) (439
Imsl’m’s’
We then define the following integrals
Dirsrims = /del’ms )ErYims(T) (436)
Bvsims = [ @00 @0V )1 (6) (437)
Brgrims = / dQUrVyrms s (T)) - (1Vyims(F))éx (438)

and rewrite

y *° d ms V’ s ms
FE)Ftey = Y /0 Arr® Vi o (1) ’”d (r )Il, rarims + Z / 7 (r)pu ()Iﬁm,s,lms (439)

r

Imsl’m/’s’ Imsl’'m

In the following, we will need these integrals:

Bt = [ A0 (61600 1) (440)
i = [ 490 ()(rVYin() (441)
I = / dQrVYi  (2) - (rVYi,(F))é: (442)

(443)

We first compute the following integral
Ill”m’l'm = /dQlejkm’ (f‘)é;“}/lm(f-) = (444)
/1 — f27" do e i(m—m )¢ COS¢

—m)!(2U r—m/) [t / 2,r

-1 d¢€z(m m')¢
V1 =220 —mt1
@i )0 —myer + 1) m'=m
2o =~y [ / P (2) P (x iV — 228, — 44
TOmm/

which is equal to

~1
Q2L+ 1)1 —m)Qr+ 1)1 —mF1) [ - _

e :Mm/_wl\/ 47r((l+m)!<47r(l’ +)mil)! ) /1de” V@R VL= et |
- 0

0
2+ 1)l —m)12l + l’ —m)
+2ﬂ5mm,\/ T (l, + o / de P () PP () | 0 (447)
1



With the help of the following well known recursion relation

/ m 1 m m
1 - J"QPI = 21 +1 [ l*i_l Pl+1~_1:|
V12 P = o= [ =m+ D) —m+2) Py Y=+ m =1 +m)P"
T 1 m m
we arrive at
ao_ -1 1_6 ((—m)(-—m-1) (l+m+1)(l+m+2)_6 .
Um/tm é 2 TN @i+ - 1) = (20 +1)(20 + 3) m=mtl
) -1 1 (—m+Di-m+2) (+m+m-1], )
Z)Z 5 |Or=t+1 2+ 1)(2+3) Ir=i—1 2+ 1)@= 1) m/=m—1
0
(l-m+D(I+m+1) (I+m)(l —m)
* (1) lél"”l\/ RS R AT Ve o s
Let’s define
U +Em A1)+ m+2)
all,m) = \/ (20 + 1)(20 + 3)
(l+m+1)({l—-—m+1)
l =
ftm) \/ (20 + 1)(21+3)
and rewrite
AR
Ill, N = —1 5 [a(l,m)él/:lﬂ - a(l’, —m’)él/:l,l] 5m’:m+l +
0
S B la(l, —=m)dy—111 — a(l',m") oy —1—1] O —m—1 +
0
0
+1 0 | [f,m)dy—ip1 + f(U',m" )0y —1-1] O =m
1

Next we compute the following integral

Bt = [ 4000 @) V00Yin () = [ d2y

Due to Wigner-Eckart theorem, we know the dependence on m,m’ is equal to I},

either found numerically, or analytically using several recursion relatio

Tt (B) (rV) Yim (F)

'm’lm*

11S.
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(448)
(449)

(450)

(451)

(452)

(453)

(454)

(455)

(456)

(457)

(458)

(459)

(460)

The dependence on [,1’ can be



The result for 12 is

1
1
Lt = | —i 5 (=l a(l,m)oy=i41 — (L +1) a(l', =m")0y=1-1] dmr=m+1 +
0
+ —1 5 [71 a(l, 7m)5l/:l+1 — (l + 1) a(l’,m’)él/:l_l] Om/—m—1 +
0
0
+1 0 [*l f(l, m)51/21+1 + (l + 1)f(l/, m’)él/:l_l] Om/—m
1

We can write both integrals in a common form, namely,

1 -1 0
IZT/Lm/lm =Cn,l a(l7 m) —1 5m’=m+1 + Cl(l, _m) —i Om'=m—1 + Qf(l, m) 0 Om’=m 5l’=l+1
0 0 1 |
1 -1 0 |
_dn,l a(lla _m,) —1 5m’=m+1 + a(llv m/) —1 5m’=m—1 - 2f(l,7 m/) 0 5m'=m 5l’=l—1
0 0 1

where

_ =1+
r hi= Ty
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(461)

(462)

(463)

(464)

(465)

(466)
(467)

(468)

We also gave coefficients for I, which gives kinetic energy operator integrated over the sphere of the MT-sphere.

In the code, we use real spheric harmonics ¥;,,+, which are related to complex spheric harmonics by

m 1+, .
Yim = (-1) \/ T’O(Z/lm+ + iYim—)
1+, .
Yiom = \/ T’O(ylm — WYim—)

(469)

(470)

In Section. IV E we derive the connection between the matrix elements of the real harmonics and complex harmonics,

and we also derive the matrix elements (y; s |T |yims)- Here we just give the final result:

(1+8m=0) (A46,r0)

—a(l,m)d

Worm' T [Yim+) = cng Sr=i41

—a(l';—m/)0,
—dy 1 Op=1—1

and

0

(orm | Tlyimz) =+ | 1 {Cn,l O =141 (a(l, M)Om’ =m+1

0

0
(A£dm=0)

2f(L,m)0ms=m 5=

(1+68,m=0)
mi=m LT —

+a(l',m")om =m—1
0

+m=
72f(l/a m/)ém’znz ﬁ

—dp,1 Or=1-1 (a(l/, — )0 — g1

(1 + 5m=0)
V14 dpm—o

(]- + 5m:0)
AV ]. + ém:O

+a(l';m')opm

+ CL(Z, _m)am’=m—1

=m—1

e e Y =

(1£6,,/—¢)

V 1+6m,’:0

(1 6o
V 1 + 6m’:0

(1 £ Gr—o)
\ 1+ 5m’=0

|
)}

(471)
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This term has name fomai2 in Wien2k, and is coded in program Force4_mine. This part reads non-spherical
potential Vkg(r) and calls another subprogram VdRho, which performns the integration.

I. Implementation of Eq. 364

This is implemented in cmpLogGdloc.
We will first rearange terms from Eq. 364 in the following way

Eq. 364 = —— Z Gij (iw { w|¢m’> Snrm (1) (G |9) (0 [xK) K A, — A?I{’ZK/ (X [90) (0 | e ) Zoram (i) <¢m|w?>}

Now we recognize that (x§ [¢)) = Ok Ak; and Ujy, = (7| dy,) hence

1 . . . : .
Eq. 364 = _B Z Gij (zw) {Ujm/Zm/m(zw)Uzﬂ, (AOTO)q;/KZKA(I](i - AgI(,ZK/(OAO)K/i/Ui/mlzm/m(lw)U;n}

We next define the following quantites

=) ANK(0A%)k (473)
K
Z (474)

In practice, we can directly compute U from the following

Gim = 3 ARK (xi|6m) (475)
k
We then simplify

Eq. 364 = —— Z {UT G(iw)U — UTG(iw)T } S (i)
The first term has the form Tr (U'TG(iw)UE(iw)> and if we just replace w — —iw, we get
an equivalent form Tr (ﬁTG(—iw)UE(—iw)), which can also be written as ’H((jTGT(iw)UZT(iw)) =

Conjugate (Tr (Z(iw)UTG(iw)l_j)) = Conjugate (Tr (UTG(iw)ﬁZ(iw)>). The last form is equal to the second term,
but conjugated, hence, the result is real. We can hence also write

1 B}
Eq. 364=2Im{ = 3 [UTG(iw)U} S (i) (476)

We hence need to compute vector projector U in addition to U and project the DMFT Green’s function to this vector
form. We define the following generalized projector

7—_@m _ (U* Ujm/ U* U’]m/) (477)

)

which is called “Igtrans” in the code. We then have

Eq. 364——— D S (iw) Z

iw,mm’

We call Gd m o= =2, 7™ Gij(iw) and compute it in “cmp_dmft_weights”.
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J. Implementation of Eq. 365

We start with the plane-wave part of Eq. 365, which takes the form

Flulley — ZwDMFT > Al Ak 7{ dS¥ic Vics Xk (478)
K K/ MT
. . iGr
=D Ry AR*GiwiDMFTAKi% d5—Vics(#) (479)
G i K Ryr Vcell

We use FFT to compute the convolution (charge in the interstitials):

1
Veeir

PG = Z AR szkDMFTA (480)
k,i, K

and the expansion of the KS-potential in terms of real spheric harmonics

Vics(r) = > Vi (1) yims(r) (481)
Ims
to obtain
plulley _ ZezGRa e R Y ViES(Rur) / dSQ Yins (F)e e, (482)
Ilms

Notice here that Vg is written in the local coordinate system, hence y;ms’s also need to be specified in the local
coordinate system attached to an atom. On the other hand, e?SRe can be computed in the global coordinate systsem.
Next we use the well known expansion of plane wave in spherical waves

Z4m Ji(Gr)Y( 24772 Ji(Gr) Z Yims(G)Yims (E) (483)
Im

m>0,s=%

The second form is for real harmonics used for potential and charge within Wien2k. We hence obtain

FPulley = Z elGR pc; RMT Z Vvlms RMT Z 47” ]l’(Gr yl/m’s’ /dQ ylma eryl’m/s’ (f') (484)

Ims U'm’s’

We then recognize the interstitial charge density on the MT-sphere, i.e.,

Pums(Ryr) = ZP e'SRedril i (GRurr)Yims (G) (485)

and the matrix elements previously computed

I_.ll’m’s’lms = <yl/m’5’|€r|ylms> (486)
to simplify
FP’U,UEU — R MT Zplms R]ij Z ‘/l’m/s"[lmsl’m’s’ (487)
Ilms U'm

For each atom, we precompute the quantity
Vima(Ra) = D Vity o (Rarr) Lt (488)
U'm!’s'
which gives simple expression for the force
FPUY = R Y pims (Rarr) Vims (Ra) (489)

lms
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The most time consuming is calculation of the interstitial charge on the MT-sphere. It can be computed in the
following way

pims(Rarr) =47y pa i'u(GRur) Y € Ry (G) (490)
Gy GeGo—star

The MT-part can also be computed with Eq. 489, except that pj.,s is in this case already computed and stored,
hence the calculation is trivial.

Alternatively, we can check the MT-part by using previously computed voulme integrlas Tr(VxsVp). We start
from

pPulley _ ZwDMFT Z AzK'AKZj{ dSxie Vs Xk (491)
KK’ MT

and use Gauss theorem to derive
j{ dSXi Vs Xk =/ d*r (Vxieo xx)Vies + Xic xx VVis) (492)
MT MT
hence

Fhulley ZwDMFT > Al Ak / Br (VisV(xieo xx) + X xx VVis) = —Tr(VksVp) — Tr(pV Vi s[493)
KK’ MT

Above we computed Tr(ViksVp). In the same way we can also compute Tr(pVViyg).

K. Check equivalence with LDA+U formula

To check previous equation on LDA+U, we notice that in Wien2k implementation, the projector is }/Z;;L/(A)(S(T -
1) Yim(#). We then have Ui Snm Uy = (00]¢m) S (dmlt0) = Afer (X' |mr) Sonrm (Sm|xx) Ak; and R =
ATOK A° hence

Uzmlzm "”Umj',R’]L = AzK’ llg’;;ﬂl E%m mal'r: <’Ltfl |uﬁ> (AOAOTOKAO)Kj (494)

/A ’ —
A K@ llivf El alm <ul |ul >KAK] = a’zlm’zm m <uf ‘uf> ljlm (495)

m’m

In LDA+U the self-energy X is static, hence summation over iw of G(iw) gives d;; fx; and then Eq. 364 is equivalent
to

2Im {Z fk’b zlm’zm m <U’l |ul > zlm}

7

which is exactly the LDA+U force implemented in Eq. 212
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IV. APPENDICES
A. Equivalence between Krakauer and Soler derivation

In Krakauer/Singh method, one uses an expansion of the basis function to calculate matrix elements of overlap and
kinetic energy. The change of the basis functions due to a shift is

5XK (I‘ — Ra)

SR ~ilk+K)xk(r—Ras) — Vixx(rt —Ry)+ - (496)

and according to Singh, one should calculate the change of the matrix elements in the following way

S (xxr|TIxk) = Oxxr|TIxx) + (x| Toxk) + (xx |67 |xx) (497)
= (i(k + K')xx — Vxx|TIxk) + (xx/|T]i(k + K)xx — Vxk) (498)
+ 7{ S Txx — yf 435 T (499)

r=Ryr T:R?CIT

The last line stands for the discontinuity term, which appears when the matrix elements yx'Txk are not continuous
across the MT boundary. For r = RX/[T we used different symbol for x to emphasize its form as plane wave in the
interstitials [This convention is used in Soler/Williams work].

It was shown by Soler/Williams in PRB 47, 6784 (1993) that this expression is equivalent to their formulation of
the force. For us, it is important to get equivalent expression, which I can rationalize (see below).

Let’s simplify the above expression

5 e Tle) = (K = K) (oo Tl = [ d*rl(Vxie) T + i TV xxd (500)
r<RwmT
+ ]{ dSxic Txx — ]{ dS¥i TXk (501)
r=Ryrp r:RXIT
Using Stokes theorem, we can convert
/ Ari(Vxx)Txk + X TV XK = / BrV(xie Txk) = f dSxie Txx (502)
r<Rmr r<RmT =Ry p
which cancels a term in Eq. 501 and gives
5 (i Tlxac) = i(K — K') {xier I TIxi) pre — jq{ S TRk (503)
=y
We can use Stokes theorem one more time to obtain
§ o aSGeTTe= [ V(TR = (Ve TIRuc) e + (R I TIV o) (504)
r=R}, r<Rmr
and since Yk are plane waves, we get
¢ ST = i(K - K) (R | TIRac) e (505)
T:RLT
Inserting this expression back into Eq. 503, gives
0 (x| TIxx) = i(K — K') [(xx | Txx) per — N/ T IXK) arr] (506)

This latter expression Eq. 506 was used in Soler/Williams, and can be derived explicitely from the form of the basis
functions yk. For simplicity, we will work with APW basis functions, but the result is general and works also for
LAPW functions. The explicit form of yk inside the MT-sphere at R, is

k(1) = u(|r — Ra|)Yim (R(E — Ra))%e“kJrK)Rayljn(R(k n K))M

() (507)
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The form in the interstitial is as always the plane wave

L i+ K)r

Xk(r) = T

When we move the atom «, we do not change the interstitial part Yk or any other atom, except atom at R,. (We
imagine moving « atom at the fixed interstitial wave function.) The reason that x changes is because of the matching
condition at the MT sphere changes. We have explicitely

(508)

(v TIxk) = (X | TIXK) 1 + D O | TIXK) pr—p = (X TIXK) + Y (X [ TIXK) prr— g — (X | TIXK) g 4509)
E 8

The first term is now extended to the entire space, and is constant as we move the atom. The second term is changed,
but only MT — « term, when atom at R,, is moved. We can also explicitely write the second term

(4m)?5u (1 + KI.S) v (& + K'|.S)

[0

x / d*r up (v = Ra|) Yy (R(E = Ra))Tw(|r — Ra|)Yim (R(E — Ra)) (510)
MT -«

_I(K-K)Rq / B ¢~ IHK) (= Ra) it K) (r—Ra) (511
MT—«

We work at fixed w; functions, hence the form of u;(r) does not change as we move the atom. Their position however
changes. In the last two parts of the above equation we can change the integration variable from r — R,, to r and we
see

(4m)%i(|k + K[S)jv (k + K'|S)
VUZ(S)’UJV(S)

(xi | Thx) = (X TIRK) + Y ¢ BTEOReY 0 (R + K) Y, (R(k + K))

X Br wp ()Y, (RE)Tuy (r)Yim (RE) (512)
r<S

_ei(K—K/)Ra / Sd3r e—i(k+Kl)rTei(k+K)r (513)
<

The only place where R, appears is in the phase factor ei(K_K/)Ra, while the real space integral is not affected at all
by moving atom «. As the first term (Xx/|T|Xk) is not affected by moving the atom, we conclude

(4m)5 |k + K[S)jv (k + K'|S)
Vul(S)ul/(S)

d37" ei(k+K/)rT6i(k+K)!‘} (514)

1) . (K-—K’ *
s (o [Tl = (K — KKK {Ym (R +K)Yir, (R(k + K))
X / d3r wp (7)Y (RE)Tuy (1) Vi (RE) — /
r<S r<S

We can summarize our result by more concise equation

%(x (v TIxk) = i(K = K') [(xx ITIxK) prr—a — X TIXK) arr—a] o1

B. General form of small variation within both methods Krakauer and Soler

To show the connection between the Krakauer/Singh and Soler/Williams more clearly, we write a case of 1D
functions. Imagine we have a 1D functions f(x) = e fy(x — a), g(z) = €'%%go(x — a), defined in the interval
[a — S,a+ S]. Outside this interval f(z) and g(x) are different functions [such as plane waves] denoted by f(x) and
g(z). The functions outside the interval [a — S, a + S] f and § do not change with the shift.

We will discuss two types of operators, which we call “rigid” and “non-rigid”. If % = 0, we call the operator
“rigid”. An example is kinetic energy operator "=V - V, which does not change as we shift the atom.

A “non-rigid” operator, such as Kohn-Sham potential, can be writen within muffin-thin sphere as V(a,z — a), to
emphasize that an operator shifts with the atom, but it also changes its shape within the sphere (the shape changes
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even if we look at it in the coordinate system attached to the shifting atom). The derivative of such an operator is

then
1) oV ov
ja/ (@e—a)= (a) - (ax) (516)

In the rest of the system (interstitals) and other MT-spheres — in which the basis does not change — we replace all

functions with their smoothened equivalents, i.e., V — V(a, x). We allowed V to depend on the shift of a, as the charge

distribution changes, hence the Hartree potential will change as well (is a solution of Poisson equation). Hence, the

Hartree potential does depend on a also in the interstitials. The local exchange-correlation potential however does not

change outside the MT-sphere as the charge outside MT-sphere does not change, hence for xc-potential 6V,../da = 0.
The matrix element of such an operator can then be computed by

a—S _ oo N a+S
Wi = [ i@vie+ [ f@vi@ s [ @vies g (517)

which can also be simplified to

a—S _ oo _ a+S )
(fIV]g) = / f@) V() + / f@)Va() + / @R (o — )V (a, — a)go(z — a)

—o0 +S

_ /;S / F@)Vi(z) + eilaRa / Fol@)V(a, 2)go(x) (518)

If we move the interval for a bit a — a 4+ da we can take the derivative of either Eq. 517 or Eq. 518 to get two
equivalent expressions for the same quantity.
Let’s first take the derivative of Eq. 517

i —(Vlg) = (FVa)e=a—8) = (fVg)lz=a+8) + (fVg)(x =a+8) - (fVg)lx=a—5)  (519)
a+S a+S a+S a—S ~
+/a—S (5f)ng:c+/ fV(g(gl)das—i—/a f(%)gd:v—k/ / f 5—‘/ (x) (520)

a—S -S —o0

Here (%) contains both terms for the rigid and non-rigid part from Eq. 516. We can siplify this expression to obtain
) of og P P %
— (fIVlg) = (5-IVIg) +{(fIVIz) +(fVg—fVole=a+5)—(fVg—fVi(z=a—25)+(fl<|g)(521)
da oa MT da’ MT oa

At the boundary = = a + S the two forms of the potential are equal V(a,S) = V(a,a + S), hence we droped tilde

sign. Notice also that one term ({f |5‘g |g)) extends over the entire space, while all others are integrated only within

MT-sphere. This form of the differential is the Krakauer’s way of differentiating matrix elements.
The alternative way is to differentiate Eq. 518, to obtain

5 ; ; s
52 UVlg) = (FVi)a = a=$) = (FVa)(e = a+5) +ila= 0" [ f@)Vao(a) (522

s a_
+eila—F)a /_S fo(z ( > Jo(z Oo 57‘/ / fz 5V (z)
which can also be written as
1) ~ ~ 1)
o UIVla) = (FV3) (o = a = ) = (FVa)w = at ) +ila = D)1V Iaher + 15 19) + (11 (51

or equivalently

a+S N ~
VI =ita 1) IV lahr + (el 401 (G0 ) 0 = [ v e vy o

In 3D we can similarly derive two forms of differentiating the matrix elements. The Krakauer’s form is

6 <6XK’

1) oV 2 . - -
(e Vi) = Vix) + x|V XK> + (xxr |~ IxK) + f dS(xie VXK — Xic ViK) (525)
SR, MT R, MT
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where (;STV contains both “rigid” and “non-rigid” part of the derivative, and Yk (xk) are plane wave functions

(augmentgd basis functions), which are used in the interstitials > S (in MT spheres r < S). Notice that the kinetic
energy part does not have terms like fTV because such derivative is absent. We thus have

dXK/

ox =k —x e
R =)+ Ao Tk — Xio Tix) (526)

R " mr  Jur

O |TIxx) = (= 1Thk)  + (e[ T
MT

R,
The alternative form, which is used in Soler/Williams, is

oV
R,

k) + O IVV Ixa) agr — fM dS%i Vi (527)
T

) .
(xx [Vixk) = i(K = K') (xx [V [xx) arr + (x|
R,
This can also be simplified to get
) ) , . . oV
& O [VIxk) = i(K = K') [(xx [VIxk) prr — (X [V IXK) 0] + (0|5~ Ixx0)
SR, oRq
+ O [VVIXK) pr — (X [VVIXK) 7 (528)

For the kinetic energy there is no change of operator associated with the shift, hence J‘STT =0and VI = 0. We

thus have

(e Thac) = K = K) (e Thadwr — § ST T

r=Ry

= i(K = K') [(xx [T|xx) pr — (X' | TIXK) s (529)

]
R,

C. Discontinuous functions

Let’s start with discontinuity in 1D. If H(z) is continuous function in the interval [—oo, oo, and we move the entire
function for a small amount a, we expect no change in the following integral

0= /dx[H(x —a)— H(z)]=—a | —dz = —a[H(c0) — H(—00)] (530)

If the function is continuous and goes to zero at large distances, this clearly works. But lets now take a function
H(z), which has a single jump at xq so that H(zy) # H(zg). We then need to add the following term

H
/dx[H(x ~a)— H(z)] = —a/ ‘foda: + a(H[zg] — Hiz) (531)
and by rearranging we have
dH _ I
deH(x —a)= [ deH(z) —a %dx +a(Hzg ] — Hlzg]) (532)
In higher D we have similar equation. Let’s move a sphere for a small amount a. We get
/dSrH(F— @) = /d3rH(r") - &’/d?’rVrH(r) + Ei?{dg(H[rg] — H[ry)) (533)

In summary, if we have a function H(r) and we move the sphere for vector @, its change is H /éd = —V,H(r). If
there is discountinuity, we have

%/d?’rH(F) = d‘/d%% +d’7{d§(H[r0’} — H[ri)) (534)
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D. Another formula

§ a8V Vi) = s alS [ aoe () (%’W‘m,)-(m (4vin ) (535)
R;{T
We know that
U L d ru U
) (§¥in) =g (5) + S0V

hence

d K}/ d K /ﬂ// K
Eq. 535 = a1 *gkox lr'é’dr (“7{ ) - (“;) 7{ Yy 6 Y d2 + (“7{ ) <“rl> / PV (F) - (V) Vi (F) €,d92

We know that

/(T‘V) l’m’( ) (T’V)}/lm(f‘) dQ) = l(l + 1)5ll’5mm’~
To derive
B = [ (9 ) - () Yo ()2, a2 (530)

we use the standard procedure discussed above to obtain

, I(l+2) 1 -1 0 |
Iiim = 5 all,m) | —i | dmrmmer +a(l,—m) | —i | Omrem—1 +2f(0,m) | 0 | Omrem | dv=i41
0 0 1 l
1 ~1 0 |
I—D(l+1

_4( )2( : ) a(lly _m/) —1 (5m1:m+1 + a(l/ﬂn/) —1 Omi=m—1— 2f 0 Om/=m | Or=1-1 (537)

0 0 1 ]

which can also be written as
I(1+2) fL(lam)&n’—m-i-l - @(lv_ Ome
Il”m’l?n = 2 6l’=l+1 —’L[CL(I7 m)ém/ferl + a(l m’*m 1
2f(l, m) m/=m
CL(ZI _m/)ém/—m—i-l - Cl,(l/ / 7rL’—m 1
I—1)({I+1 !
%6”:[—1 _i[a(lla -m )5m’*m+1 + a(l m m’*m 1 (538)
*2]0([/7 /) m/=m
E. Matrix elements of the Spheric harmonics
We are interested in the following integrals:

o = / A0V, (£)8 Vi (£) (539)
T = [ 490 ()(rVYin ) (540)
B = / dQrVYy, () - (1Y Yo (8))2s (541)

(542)
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1 -1 0
Ill/m’lm = — a(l, m) —1 5m/:m+1 + a(l, 7m) —1 Omi=m—1+ Qf(l, m) 0 | dvmr=m 5l’:l+1
0 0 1 |
. 1 -1 0 |
_5 a(llv _m/) —1 6m’:m+1 + a(lla m/) —1 5m’:m71 - Zf(llv m/) 0 5m/:m 51/:l71 (543)
0 0 1 |
1 -1 0 |
) all,m) | —i | dmreme1r +a(l,—m) | —i | Omrmm—1 +2f(,m) | 0 | Ommm | Sr=it1
0 0 1 ]
I+1 1 -1 0 -
5 alll)=m/) | =i | dmrzmer +al’,m") | —i | Omrmme1 —2f(U';m) | 0 | Oprem | Sv=i—1 (544)
0 0 1 ]
1 ~1 0 ]
. (142
Ils/m’lm ( 2 ) CL(Z, m) —1 5m’:m+1 + a(l, *m) —1 5m’:m—1 + 2f(l7 m) 0 5m’:m §l’:l+1
0 0 1 |
1 —1 0 ]
I-1D)(+1
_{ )2( £ al',=m') | —i | dmimmer +a(l',m") | —i | Smrmme1 = 2F(',m') | O | Gpr=m | dr=1—1 (545)
0 0 1 |
We can write all three integrals in a common form, namely,
1 -1 0 |
It im = Cny |all,m) | —i | dmymme1 +all,—m) | —i | Sprmm—1 +2f(,m) | 0 | Omimm | Sr=i41
0 0 1 ]
1 ~1 0 |
—dpy |a(l';=m) | —i | Omremrr +al’,m') | —i | Semer = 2f('sm) | O | Oz | Or—i—1 (546)
0 0 1 l
where
1 1
cip=35 dig= 5 (547)
I+1
Cog=—% dyy= 5 (548)
I-1D+1
31 = l(l-2|—2) d3,l — ( )( ) (549)

2

Next we want to derive the integrals in real spheric harmonics ¥;,,,4 which are related to complex spheric harmonics

by

Yim

[14 0
Yi—-m = T’O(ylmﬁ-

m 1+ 6m,0 .
(1™ =5 (s + )

- iylm—)

(550)

(551)

Here we want to find the connection between (Y}, ,|T|Yim) and (yrm s |T|Yims). We will derive the connection for
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the case of T being a real operator. We have

] ] -1 m4+m
(Wt Tl )+ W Thotm) = Re (@romes — igprme— Tl + 91 ) = (3521% (V7 IT[Yim)

) ) —-1)m .
Y+ T Yim+) — Yrm | Tyim—) = Re (Yrmr+ + Yrm —|T|Yim+ + iYim—)) = ( . /'l)) 2Re (<Yl’—m'|T|Ylm>)
Wom | Tyim=) — Yrm =T Yim+) = Im (Yrmt+ — Yem =T |Yim+ + iYim-)) = Tﬂm (Y | TYim))

. ‘ —1ym .
(Tl + (= Tl ) = 100 (s + = Tt + i) = 200 (07 7195)

’

where D = (1 + 6,,—0)(1 + d,n/—0). We then have

ol = o e (i) + (-0 Ol T1Vi)) (350
M) = R (e 1Y) = (1™ (0Tl (559
Tl = et (W 1Y)+ (1 (- TIG) (530
e Tl = +(5_:>><+1+ st (O T1Yi) = ()™ O T))  (559)

To proceed, we first turn the above complex harmonics integrals into slightly different form:

a(l,m)8pm=mi1 — a(l, —=m)dmr—m—1
Yo | TYim) = ng Sv=i41 | —ila(l,m)0m=my1 + a(l, =m)6pmr=m 1]
2f(l, m)5m/=m
a(l!'; =m/ )6 =ms1 — a(l!; )6 —m—1
~dpy Symi—1 | —i[a(l, —m)opmr—mi1 + a(l', 1) S —m—1] (556)
=2f(l",m/) 8y —m

For real spheric harmonics, we also need (Yj_,/|T|Yim). But we are interested only in the case when both m >=0
and m’ >=0:

—Cl(l, _m)ém/:7m+l(6m:0 + 6m:1)
Yt [TYim) = eng Sv=i1 | —ia(l,=m)dm=—mi1(Gm=0 + Om=1)
Zf(la m)ém’:—mémzo

—a(l, _m/)(SM’:fmﬁLl((Sm:O + 6m:1))
_d’ml Orr=i-1 —ia(l’, _m/)6m’:7m+1(5m:0 + 6m:1) (557)
_Qf(l/7 _m/)ém'——mdmzo

If the two equations are put together, we obtain (for m >= 0 and m’ >=0):

a(l, m)émumﬂ(l + 5m 0) — a(l — )5m/:m71(1 + 5m:1)
Yironr [T Yim) £ (=1)™ (Y | T|Yimn) = et S—i11 —i[a(l,m)0m/=m+1(1 F Om=0) + a(l, =m) Sy =m—1(1 £ pm=1)]
2f(l,m)0mr=m (1 £ dm=0)
a(l’, —ml)6m/:m+1(1 + 5m:0) — a(l’, m/)(sm/:m,1(1 + 5m:1)
—dny Op—i—1 | —ifa(l';, =m0 —mi1 (1 F Sm=o) + a(l';m")mr—m—1(1 £ 6me1)]
—2f (I, 1)t = (1 % Gro)
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hence we have

(_1)m+m/ ,
'm/ T m = Re Y/m/TYm + (=)™ Y/,m/ TYm =
£ Tlime) = e R (¥ 1Y) (1) (Vi TV )
(_1)m+m/ (l(l7 m)ém':erl(l + 6771:0) - (l(l7 —m)ém/:m,1(1 + 5771:1)
Cn,l =141 0

V(L4 0m=0) (L + 0m—0) 21 (1, m)0m=m (1 £ 6m—o)

a(l’, —m/)§m/:m+1(1 + (Sm:()) — a(l’, m/)ém/:m,1(1 + 5m:1)
—dy1 Oy=i-1 0 (558)
—2f (I, 1) —m (1 £ S—o)
and

(_1)7n+7n/
V(L + 6m=0)(1 + dmr—0)

<yl’m’:t‘T|ylm:F> == Im (<Y2’m’|T|mm> + (_l)ml <Y—l’fm"T|lem>) =

, 0
e
Ot oy | =t | el mPm—mia (1 8nmo) : a(l, ~m)Sms =1 (1 % G )]
0
—dni0v=i—1 | —[a(l', =MV —mi1(1 F o) + a(l',m )0/ —m—1(1 % 5ppe1)] (559)
0
These equations can be simplified, which gives the final result:
- / (1£0m=0) — , (£d,,r-0)
Cl(l, m)ém =m+1 m + a/(l7 m)dm =m—1 \/ﬁ
Wrrm'+ | T |Yim+) = Cn,t Ov=i41 0
+m=
2 (1) = 5t
_ /A , (14+68,=0) / / , (14+6,,/—¢)
CL(Z , M )5m =m+1l 153, —o + Cl(l , M )6m =m—1 \/ﬁ
—dpn Or=1—1 0 (560)
(1£8,m—0)
=2f(l, m/)ém’:mﬁ

and
) (1F o) (1 £ )
i | Tyim=) = £ | 1 Cn. 0= a(l,m)0m=m 7mzo+al,—m O/ =m— M)
o slTlns) = | 1 { 16 l+1(< o= G2 =)y )

1:F§m:0) (liém/_o)>}
—d, Syt U= em (7 U, m )b =1 et 561
1 0=l 1<a( m) , +1\/m+a( m) 1\/m ( )

F. Debugging

We can compute exact force in a very particular situation, in which we rigidly move Kohn-Sham potential with
the sphere of the moving atom. In this case the change of matrix elements of the potential are really simple The
alternative form, which is used in Soler/Williams, is

0 _ Gk Tre~
s Oase V) = (K — K) Gaae V) — - dSie Vi (562)
« MT

This is because the MT-part is not changing except for the phase factor in front e’ t¥)Ra while the interstitial part
has a surface term because there is slightly more interstitial volume behind the sphere and less infront.
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The equation can also be memorized as a special case in which

%
R,

=-VV.

Note that in Wien2K the convolution of Vé( S and the plane wave with the MT-hole’s is computed in lapwO step.
Hence, when the potential is kept constant, we actually fix also ()ZK|‘~/K SINK ) intorstitials (the Kohn-Sham potential
in interestitials), hence the last term of above equation is absent.

For the kinetic part, similar equation holds

) . =k e
st Do lThad) = K = K) (e [Thachyr — - dSti T (563)
e% MT
hence we have
1) . =y -
5R <XK/ ‘HO‘XK> = Z(K — K/) <XK'|HO|XK>]\/[T — % dSXK/HOXK (564)
e MT

But if we fix potential in lapw0, we actually just need

5 S
R (xx/|H|xx) = i(K — K') (xx' [ H°|XK) ps 7 dSXw TXk (565)
MT

For the overlap, the equation

s e o) = i(K — ) (e b — - dSitiein (566)

is exact.
We want to simulate the following equations

00 L
« KK’ MT
ot SHPO 0 , ot = n e A0
(A% m A%y = > ANI(K = K) (xx [HOxk) pr Ay — Ao b dSVio Txx Ak, (568)
« vKK'

and check it with simulating a finite difference. The latter is obtained by computing H° and O for unperturbed
system, we then move an atom and recompute H° and O, and then take numerically finite difference and compare
with analytically obtained derivative.

For the overlap, we need the following two terms: The first term is

(A%T0n7 A%y = Y Ali(K — ') (xae Ixw) arr Ay = (569)
KK’
(wilw) — (wli)  (w|uf©) AimK
= > Al =K (ahue bipaer e ) | Gl (i) Gafuf©) || b | Ax
KK (ufClw) (ufCla) (ufCluf®) ClmK
1 0 (wuf®)\ [ Am
= i (0T B o ) |0 i) (luf©) | | B (570)
(w|uf®) {(dg|uf©) 1 Cjim
- N N 1 0 <ul|ulLO> Qj.lm
i (A B G )| 0 i) {inuf©) || bim
(u|uf®) (ig|uf©) 1 Cj,im

which is equal to

(A0 A®) = i(O — OF) (571)
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where
1 0 (ulu©)\ [ Ajim
O = (@0 Viom o ) | 0 Gli) (@nfuf©) | | Biam (572)
(uluf©) (d|uf) 1 Cjim

The second term is

. i(K—K')r
(A°T05A%); =Y A, f{ dSXic Xx Ak = Y A% Ak 7{ dS———— _ZAK c.i Ak RMT ¢!GRe / dQé.e'5"
M

KK’ T KK’

The final result is clearly

60
(AOTWAO)H = (A On7A%)i; — (A°TO5 A% (573)

We need the following quantity

Dg = ZAK il (574)

which is computed by FFT. We first compute

=) Agge (575)
K
and then obtain
&= 3 YV )Yl (576)
r
We hence have
(A" 05 A%);; Z D RMT 0GR /dQ* iGr (577)

and because

iGr - .G
/ dQe'Cre, = 4m@ J1(|G|Rur) (578)
we obtain
AT R? G |
(A’T0gA%);; = % > Dgie GRa@ j1(|G|Rur) (579)
G

For the Hamiltonian, we need many more terms. We write

0

AO
( 0R,

A%);; = (AYTH T A5 + (AYTH ™ A i + (A% dTnr A%)iy — (AT A%)y; — (A°TVeA®)y;  (580)

Note that the last term is absent when potential is held fixed in lapw0.
We start with the spherically-symmetric part in the MT-sphere:

sym _ . sph
(ATH A = D Al i(K = K) (x| = V2 + V%' (r)[xk) yr Axy =

KK’

; AimK

- /
Z Ajgi(K - K') ( Umk Olmkr Clmkr ) H| bimk | Ak
KK ClmK
-Ag ilm a5 lm

. * * _ * %
=1 ( a’i,lm’ bi,lm i, lm, ) H Bj im ¢ ( i,0m? Bz Jm ilm ) H bj,lm, (581)

C_],lm Cjlm
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where

(w|Hlw) — (w|Hlw)  (w|H|ufO)
H=| (w|Hlw) (wHw) (Hu) (582)
(ufClHlw) (ufC|Hlu) (ufC|H|ufO)

and (uFC|H|w) = 2((uFO|H|w) + (w|H|uFC)). When H = —V? 4+ V" we get for the MT part 3 x 3 matrix

Ey 3 3 (Er + Ef) (u|u*)
"= 2 By (i) LB+ BFO) (aut©) + & (muf) | (583)
%(El + EZLO) (ul|ulLO> %(El + ElLO) <ul|ulLO> + % <ul|ulLO> ElLO
The result is
(AT H 77 A%) = i(R — RT) (584)
with
A’j lm
R= ( a;‘k,lmﬂ b;‘k,lm i, lm ) H B],lm (585)
C],lm

Next we add non-spherically symmetric part

(AT A%y = 3 Al i(K — K') (i [V (9 i)y Ay = (586)
KK’
> (K - Kaf o [ deud ()i 0V ) i (5 (1) (587)

KK'l'm'k’ lmk

The non-spherical symmetric potential is read from case.nsh, and takes the form

Kilimikaloma —

Vs = [ Yo, ©U VS ()Y 6) (55%)

The result then is
nsym . non—sph fx non—sph * _k x \*
("401-‘H'M7y1 Ao)ij =1 Z a; l’m/V i j - ("41 l’m/v i aj,lm) (589)

'U'm/ klmY v j,lm 1U'm! klm
U'm’k’ Ilmk
We next use the fact that

non—sph * __ y,non—sph
Vn’l/m’ralm - anmn’l’m’

to obtain
AOTHnsymAO . ynon— sph Vnon sph —i(R RT
( MT )ij =1 Z a;, l’m’ K'U'm’klm¥j, Jim — ( a;, l’ VR Um! klmY N, lm) - Z( - )ij (590)
U'm/Kr’Imk
where
h
Rij = Z a;, l’m’ VT?(Z)/Zn S:-ell)m j,lm (591)

U'm’k’ Ilmk

We also need to add the surface term because we use V - V in the interstitial and —V? in the MT-sphere. This
term is

(AOTdTmTAO)ij = Z AIK,i(K — K’)AKJ% dgxl*{JrK,(r)VerJrK (r) = (592)
KK’ Ryr
ArmK
fr D Al i =K (0 Ve Grer )R | Domic | Arj = (593)
K ClmK
b2 “Eﬂ tm . aj,im
7 RMT ( a/;‘,lm7 br,lm 7, lm ) R B] Im - ( ilm> Brlm 'Zl’nl ) R bj,lm (594)

CJ:lm Cjlm
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where
i wht s g Jf ot
R=|  wlr g PE R U SRl (599
L . L
B 4 ufoduy 32 pupodis)  yfodd
so that
(A% dTy 7 A%);; = i(O — OF) (596)
with
-’Zl'] lm
2 * *
0= RMT ( ai,lm’ bi,lm i, lm > R BJ lm (597)
C] lm
Lei(K=K')r
(A% T5 A%, =y A%, 7{ dSXic TRk Ak, = Y AR A (K + k) - (K + k) f{ dS% = (598)
KK’ KK’

SOAY (K= G+k) - (K + k)AL, R‘A/” iGR, / d0FiST (599)
KG

We then define

Co=)» A¥ q.(K-G+k)-(K+kAg, (600)
K
which is obtained by FFT of
Z AY; (K + k)e K (601)
and
— i ok —‘_ iKI‘z
Ce = z, > X;-Xie (602)
We finally have
4 G
(A" T30 = 3 Cae ™™ Rar [ a9 - s > Ca M 15 h((GIRa) (603)

We conclude with the potential part

o 0 0 _’ei(K—K’)r

(A%TV5 A%, ZA AL j{MT dS———Vis(r) (604)

The expansion of the potential exists
Vis(r) =Y e 'S Vg,, (605)

Go
which gives
z(K K —Go)r _’eiGI‘

AV = Y A% AL Ve, ]{ A5 = Y AR o, Ak Ve, ]f 4 (606)

K'KG, MT KGG, MT
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We then perform FFT on A° and V to obtain

Yi(r) =) e KAk, (607)
K
Vi)=Y e%myg, (608)
Go
We can then show that
* 1 * 1Gr
Be=) A q,-c.idkVa, = N D Y )V (r)Yi(r)e' S (609)
KGO r;
hence
, R2 . 47 R? , G
0t 0y, . __ iGRo 2VMT > iGr __ MT - iIGR, 2
(A%TV A%, = zG:EGe v /dQere =~ %EG e G J1(|G|Ruy) (610)

If we want to compute the potential on the MT-sphere using interstitial potential, we write

V(r)=> Vae ' = e "ReVgdn Y (=) (|G| Rarr) Yims (G)yims (F) (611)
G lm
and compute
Vims(r) = Y Vae "7 =) " e "CRay, (G)Vadr(—i)' (|G| Rur) (612)
G G

G. Calculation of H in lapw1l
1. Interstitails

Note that in lapwl, the plane wave basis function (valid in the interstitial) is defined by

- 1,
o W@ (k+K)r (613)
In the interstitials, the overlap is
3 SIP 3% o iR (K-K') 5, €TEK)
Oxx’ = (Yk/|Xk) = d’Xx XK = kK’ — Ze * d v (614)
interstitial R, MT
J1(K = K'[Rur) R (K—K'
= dxk’ — AT R? Ral ) 615
KK T Veer|K — K| Rze (615)
Vur j1(IK = K'|[Ryr) R (K—K’
= dxk’ — 3 R ) 616
KK Veew |K—=K'|Ryr ;e (616)
and the kinetic part is
Tk = (Xx/|T|Xx) = / Y Txx = (K' +k)(K + k) / &’ X Xx = (K’ + k) (K + k) Ok g617)
interstitial interstitial
The potential part is
Vkk = (Yx/|V|x) = / P Y Vae " =) VG/ KK -G)r (618)
interstitial G G interstitial

B (K-K'-G)Ra o p2 (K —-K' —G[Rur)
%: VG <5K—K’—G ; (& 47TRMT ‘K K — G‘ (619)
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We compute this by computing convolution of Vg and the following quantity

. i1(|K|R
Ri =k — »_ ™ Rdr Ry, J1([K[Rarr) I|< M) (620)
Let’s define
UK = Z VG,R»KfG (621)
G
We then see that the result is
Vi = Uk _k/ (622)
Note that Uk is named warp or warpin, and is stored in case.vns.
2. Muffin-thin, non-local orbitals
The basis inside MT-part is
dmi! RMT RIS b ~ s v 1
=> # Yim (R (k + K)) (@ w (1) + bix (1)) Yy, (R, 1) (623)
Imp’
We first perform the calculation in the absence of local orbitals. For overlap, we have
<XK’|XK>MT = / dr(a?‘mKlul + bTmK/al)(almKul + blmKﬂl) = a?‘mK/almK + b?mKlblmK <u|u> (624)
MT
For Hamiltonian, we have two parts, i.e,
Qe had)yr = [ Xio -V + VM + § - dSxio Ve (625)
MT MT
= &Y, (v) (@ + b ) (= V2 + Vle™ ) (aimmcur + bimictin) Yim (r)
MT
X X . du)(R diu(R) . .
HRr [ a0 )+ b in(R) e A by v v
MT T d""
= / dr(a}“mK,ul + bzka/iLl) [sl(almKul + blmKul) + blmKul]
MT
* " . dui(R) diy(R)
+ R (afac w(R) + bt (R)) (aim dgﬂ bimk “ar )
= El(ame/almK + b?(mK/blmK <ﬂl \ul>) + a;‘mK,blmK (626)
+R%\4T <almKlalmKUZ(R) dr + blmK’blmKul(R) d'r + almK’blmKul(R) dr + blmK/almK I(R) dr
We know that
. du(R) du(R) 1
— = — 2
hence we can use this identity in the last term to obtain more symmetric result
X/ HY" XK) pr = €1(@fmg @mK + bl bimk (W]t)) + afpx bimk + bk Gimk (628)
" du;(R . ) diy (R . . di (R
+ Br (ahacoman(®) 2 bacin(R) L 4 (b + b (7) 200D
dr dr dr
In all cases, we have terms like a},, 1/ bimi, which can be further simplified
. _ UrRYyr)® ik-x)R.; : )
> af e bimk = e d b Y Yim (Ra(K' + %))V, (Ra(K + k) (629)
A7R2,.)2 . / - 20+1
_ %ezmm R i i Pi((K' + ) (K +K)) (630)
47TRMT

(20 + 1) P((K' + k) (K + k))e' K Rag b (631)
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where

dnc \ _ ( (S) ik +K[S) — i (S)(k + K|S) 632)
bixc L (9)ji(k +K|S) = w(S) 4 (|k + KIS)

We first define

C(K'\K) = > K KIR. %(21 + 1) P((K' +k)(K + k) (633)

acequivalent

For the overlap we can get

Oxxk’ = (xx'|xk) pr = Ci(K',K) (alK’&lK + b bix <1Z|?l>) (634)
And for the Hamiltonian, we get

Hyx = (xx | H*™|xK) yyp = C1r(K', K) {1 (@ e + b bie (T ) + dme b + b g

+R3,r |:C~UK'UZ(R) ducll( ) + b (R )du;( )} K
+R3,r [BlK/iLl(R) dia(R) + argru (R) d( )] IK } (635)
3. Muffin-thin, local orbitals
The basis inside the MT-part, in which Hamiltonian is diagonalized, is
) = Y AT 000 Y (B -+ ) (1) + (1)) () (636)

Imp’

4mit R2 1 ,
() = 37 = I Y (R (e K ) @) + B2ia(r) + euf ()Y (R'r) - (637)

m’ !
In the last term we compute a'®, b'° and ¢'° so that x, (r = Ryr) = 0. In LAPW method, we can also make derivative
dx,(r = Rpyr)/dr vanish, while in APW+lo only the value x, (r = Rasr) vanishes. Note that the index for the local
orbital v comprises (4,1, jio, @, m) in this order, where (i, I, jio, o, m) are (index of a sort, [, index enumerates local
orbital, index of the equivalent atom, m).

Notice that the phase factor in the local orbital functions is taken to be the same as in augmented plane waves.
Moreover, K, is taken to be different for each local orbital component. Namely, each set of equivalent atoms and
their m quantum numbers are assigmed a unique set of K’s, usually just starting from the beginning of the list. For
different atom types and different [’s the reciprocal vectors repeat, so that for example each first atom of a new type
and its first m = —[ will have K,, = 0 vector. I do not know why is such extra phase factor necessary.... but this is
how it is implemented in Wien2k.

The orbital, which vanishes at the MT-boundary, has the following form:

uf,oc(r) = a Cuy(r) + blo (r)+ cloulLO (638)

(=V2 + Vaym)ul*(r) = alfu; B}, + b (W E}, + w) + c'uf O E!, = (al’ B}, + b )u, + VY E) iy + ¢ ELuf©  (639)
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In the code we define

CY = (wlu) = a; + & (wiluy©) (640)
Oy = () = 0y (i) + e (i|up ) (641)
Oy = @l fuf ) = d? + b2 (infuf ) + ol {uauf ) (642)
1 1 1
Cy = 5 (W Haymlwr) + (| Hoym |0,)) = a7 By, + 507 + 57 (ulu) (B}, + ) (643)
v 1 oc . oc o . . o 1 o o . 1
Oty = 5 (o Hagrlin) + Gy ul2)) = B i) B, + Si9 4 2 Gonluf ) 4+ c Giafu™) 2 (BL + L) (644)
v 1 oc oc o o o o . 1
Cls = §(<ulu ‘HsymlulLO> + <ulL |Héym|ul >) = Cly E;M + §bf/ <ul|ulLO> + (ai,b <ul|ulLO> + blu <ul|ulLO>) i(Eu =+ Eu’)
1 duloc(r)
akinlo = §R?\4T dT' ‘T:R]\{T (645)
We need to calculate the overlap terms, such as
(47TR?\/[T)2 (K=K, )r *
Ok = (o) = ML S KRIRY (Ry (K 4 10) ¥ (R (K, + 1)) (646)
m/ !
(a u; + bloul + C Ul |C~L1Kul + i)lK’l'l,l> = (647)
(47TR?\4T)2 (K—K,)r,/ * ~ v 7 v
= T S 00y (R (K 410 Vit (R (K, +10) % (@Y +BxcCf) (648)
m/ !

Hamiltonian, which takes the form

Ol o yr = [ =T+ Vi N+ dScve, (649)
is then given by
1 sym sym *
Hyw = 5 (O H™" xxe) arr + X H™™ [x0) )
47TR%/1T i(K—K,)r *
Hy, = Z # Y (R (K + K)) Yy (R (Ko + k) (650)

X ((aly"ul + blyolll + ClyoulLO|H|C~LlKul + BlKlll> (651)
d(a bt
tocal (aw + lKuz)> ) (652)
r=RyT

dr
Here overline means symmetrize the matrix elements. Note that u{°°® = 0, hence we can drop the last term. The
code computes this quantity:
(4m R )
Vv

+ (axu + BZK'[M) +u

R?\/[T duéocal
2 dr

Hy, = Z ei(K*KV)"u’Ym/(RM/ (K + k))Yl;kn’ (Ru’ (K, +k)) x (qxCt, + ElKCiIQ) + (653)

m/ !

4t R3 )2 (KK )r " ~ .
+% Y I (R (K + X)) Yo (R (Ko + k) (@uscus (Rarr) + bicin(Rarr))akini— (654)

mlu/
Hence the original surface term

loc

R3,

47TR2 2 ; _ r *
OTBYT)" S K08y, (R (K 4 K0) Y (R (K + K)

% (arw + b))

dr v dr

aku; + bty
+ uloc

m/M/ ’I‘:RMT

was simplified to

(47 R3/r)? i(K-K,)r,/ . R [ - dulec
CTMEL 5 0 (0 K 10 Vi (B K+ 80) T G+ i) S| |

m'p
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because u%ocal =0.
Finally, for the last term we have

(47TR?\4T)2

Ou = () = 28 3 MY (R (K +10) Vi (R (K + k) (@20 + 20 + €2 CE)655)
m/ !
and
Hsym — (47TR%\4T)2 i(Kusz,,)r L/Y R K k Y* R K k 656
{(xv o) = "—=— e # Yims (R (Ko + k)Y (R (Ky + k) X (656)
m/u!
(@l (ugluy?®) + b9 (iu|uld®) + ¢ (uf @ |ulo®)) (657)
so that
1 sym sym *
Hy = SO X0 + (o H™[x,)) (658)
is
(47TR?\JT)2 (K, —Ky)r,/ * lo A lo 1w lo
Hy, = v Z e T Y (R (Ko + k)Y (R (Ko, 4+ k) X (a7 07y + b CTy + ¢, C13) - (659)

m/ !

Note that this can also be written as

lo
(47TR%\4T)2 (K, —K,)r,/ * lo lo lo alyo/
Hypy = M S 0 K8y (R (K +10) Vi (R (K +10) x ((ale, bl e o[ s | (660)
m/’ ! Cfﬁ
4. Non-spherical part
We first construct a;mk, bimk, cimk coefficients, which take the form
AlmK arK 2
7 AT Ry p 4 i(K+k)R.
bim, =15 —==i'e Y (k+ K 661
ImK 1K \/V l ( ) ( )
ClmK 0

for first Nk reciprocal vectors. For K index above Nk, we populate a;,k with local orbitals, where the same
coefficients take the form

K, al? ArR2

bimK, _ bf,o \/%IT ilel(K”Jrk)R“Yﬁn(k+Ky) (662)
lo

ClmK,, C,

We then calculate

™™ = Qaae [V~ c) = (663)

/(a?‘,m,K,ul/ (7”) + b?/m/K/’[l,l/(T) + Czk/m/K/UlLfO (T))}/}Tm/(r)V(I‘)Hm (I‘) (CleKul(T) + bmedz(T) + clmKuLO (7‘))

r

We can define the following matrix

uy (r)
vemam — [ i) | Y 6V () (), ), b)) (664)
r LO
w” (r)
and use it to evaluate the sum
, AlmK
H}Z??{jsym = ( a/l*’m’K” bzk/m’K/? Czk’m/K’ ) Vl m,m blmK

ClmK



H. Alternative derivation

When calculating Hamiltonian or forces, we want to calculate the following matrix elements

1 *
S (O [Hxx) + (x| H [ xx)

2
1 (wlHlw)  (wlH) (] Hup©) AmK
=5 (e Viwrer i ) | Gl ) Gl Hlin) Gl HE) | | b
(fO H ) (uf©|Hig) (1) ) \
X (il Hlw) (ol Hlin) [ Hi©) \ ([ afe
5 (e, binsc comac ) | Gl Bl (@l Hlia) Gl Ha?) || b
(FO Hlw) (O |Hia) (fOHNufO) )\ e

The product dxs Hik + dx H*dk’ can be rearranged as dx/(H + HT)('iK, hence we have

1 %
(O [ HIxx) + (xx [Hxk)" =

2
(wlHlu)  (w|Hlw)  (w|Hul®) amK
= (s Vs e ) | ) Gl Hlag) Gl HlafO) | | bk
(ufC|Huy) (ufC|Hli) (uf©|Hluf) CimK

where (uf©|Hlu) = 5((uf | Hlu) + (w|H|uf 7))
For example, for H = —V? + V" and MT-part, we get for the 3 x 3 matrix

Ey 3 (B + ELO) (u|ul©)
H= % E; (4]a) %(El + EZLO) <u|uLO> + % (ul\ufo)
%(El + EZLO) (ul|ulLO> %(El + ElLO) <ul|ulLO> + % (ul|ulLO> ElLO

To get the component of the force, which takes the form

6Hy; = > A% i(K — K') (aac [H i) A%

KK’
we immediately get
Alm,j i,
6Hlﬂ =1 ( alm,i’ blm,i Clm,i ) H Blm,j ¢ ( ‘Alm,i7 Blm,i Clm,i ) H blm7.7
Cim.j Cim,j
or
- % - k
A, Ui, j
5Hij =1 ( azkm,ia b7m7z Czkm,i ) H Blm,j -1 ( -Alm,ia Blm,i Clm,i ) H b?mJ'
. *
Cim,j L Cm,j / |
or
- - *
Alm,j Alm i
0H;; =i ( Umnis Om,i Clmi ) H| Bim, v ( Un,js Oimj Cim,j ) H| Bim.i
Clm,j L Clm,z i
and finally
§Hij = i(H —HT)y
where
1 1 LO LO
£ 3 3 (B + E©) (uu®?)
= 1 e 1 LOY /|, LO 1 LO
H= 5 By (aa) 3 (B + EP9) (a|u™®) + 5 (wlu;®)

LB+ EEFO) (wluf©) $(Ei+ EEO) (w|uf©) + 3 (wlufO) ELO

99

(665)

(666)

(667)

(668)

(669)

(670)

(671)

(672)

(673)

(674)

(675)

(676)
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I. How to get a;im

In dmft2, we need to compute coeflicients a; j,, (7 is band index) from a;,k and a,. First, lets refresh the form of
the orbitals

) = YA RMT K Y (R (K + K)) e (r) + buacin (7)) Vi (R 17) (677)

Imp’

4 'lR2 : :
() = 0 MR (R b+ o)) (@ (r) W) €lfuf© () Vi (B 'r) - (679)

m’ !
The eigenvectors are large vectors of the form: (A, A,;). We want to write the KS-orbitals in the MT-spheres as
LO o -
ile) = 3 (@l (r) + O ta(r) + 3 el g, w7 (1) Yim (5 ) (679)
w,lm Jio

Here v = (i, 1", 41, ¥, m")
We clearly have

m

i AT Rt ik i
Wi | = 20 Ave— TN (R (6 K) | b
Ciblm Jio K 0

al;’

4
+ > AL TR e x, i (Ru(k+K) [ lo | 607 = 1) 40m — iatom)S ity — Jio) (680)
\/‘7 clodio

v—pu?,mY



