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We critique a Padanalytic continuation method whereby a rational polynomial function is fit to a set of
input points by means of a single matrix inversion. This procedure is accomplished to an extremely high
accuracy using a symbolic computation algorithm. As an example of this method in action, it is applied to the
problem of determining the spectral function of a single-particle thermal Green’s function known only at a
finite number of Matsubara frequencies with two example self energies drawn frofantlagrix theory of the
Hubbard model. We present a systematic analysis of the effects of error in the input points on the analytic
continuation, and this leads us to propose a procedure to test quantitatively the reliability of the resulting
continuation, thus eliminating the black-magic label frequently attached to this procedure.

I. INTRODUCTION classes(i) those that return the value of the continued func-
' ' _ ' _ tion point by point in the complex planjé(.A),z]—f(z) and
Analytic continuation arises in the many-body problem i) those that yield the function itseff.A)—f by returning
whenever real-time dynamics are to be recovered from a rene polynomial(or continued fractioncoefficients. Thiele’s
sponse function calculated at nonzero temperatures in th@ethod is classi), as are most numerical methods. In this
Matsubara formalism. In that case, the function whose ValU@aper we present a robust pmeme that is C|aig) and
is known only at a discrete set of points on the imaginarypropose a goodness-of-fit criterion based on the convergence
axis must be continued to the real axis. of the polynomial coefficients to allowed values. One advan-
A general statement of the problem of interest in this patage of our approach is that we formulate the problem as a
per is as follows: An analytic continuation of a functibn matrix equation, allowing us to make use of existing, highly
defined on a subsedC C is a function that coincides with  efficient routines for matrix inversion. In contrast, a naively
on A and is analytic on a domain containingy Usually, we  implemented recursion algorithm can lead to a severe propa-
are interested in the analytic continuatibmwith the largest ~9ation of error since repeated operations are performed on

hd i for thef is th test i tensi fterms of very different orders of magnitude.
such domain, for them IS the greatest analytic extension o Our paper is organized as follows. In the next section we

f to the ComP'e?‘ plane. Since th-ere exist; no general Préwyiey the formal aspects of thermal Green’s functions to
scription for findingf from f, there is no choice but to resort establish the definitions of the various functions that enter
to approximate techniques. Currently, the state of the “art”into this problem. In Sec. Ill, we present the details of the
is to interpolate between known points using fitting functionsPadeform that we will use, and state the algorithm that we
capable of reproducing the analytic structure afi the com- ~ Use to solve for the Padmefficients. This leads to the con-

plex planet A serious difficulty is that the analytic structure Sideration of the accuracy required for such a calculation,
of T is not usually knowra priori thus necessitating the use of a high-accuracy symbolic com-

. . . , . putation algorithm. This is presented in Sec. IV, and then we
. A;]/y|(:ir]ely qsed tfechrlnque IS Ithe Padpprox.|mant mgthog display our numerical results for relevant test functions, in-
|fn V\tl Ich ratios 3 F’Of.{tf‘omf'a s(?r terrgmatmlgpc%rl;tmue cluding the statistical test that allows us to conclude whether
rac iong are used as fitting functions. Severa “80REMES o ot g given analytic continuation is accurate. Finally, in
exist. The most common scheme, a recursive algorith

called Thiele’s Reciprocal Difference Methddyas used by "Sec. v we present our conclusions.
Vidberg and Sereridn the context of the Eliashberg equa-
tions. Yet, despite twenty years of widespread use, thé Pade
approximant method remains somewhat of an untested ap- First, we introduce the components of theories based on
proach in that there is still no reliable, quantitative measurehermal Green’s functions to establish the definitions of the
of the quality of a Padeesult. The prevailing wisdom is that various functions that enter into this problem.

a Paddfit can be considered “good” when the output func-  The one-particle propagator or Green’s function can be

tion is stable with respect to the addition of more inputformulated using real or imaginary time operators. In real
points. The results of this work make it clear that such ajme, the retarded Green’s function

criterion is insufficient.
The various Padechemes can be divided into two broad GR(t)=—i{c(it),c’(0)})6(t) 1)

Il. GREEN'S FUNCTION FORMALISM
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describes how the system responds when a particle is addefl G may be discontinuous across the real axis. It also im-
at time zero and removed at tinelts imaginary-time coun-  plies that we need only know the function in either the upper

terpart, the thermal Green’s function or the lower half plane since the other is a conjugated reflec-
7)=—(T[c(n)c(0)]), 2) tion of the first. Third,G can be written as a Stieltjes/Hilbert
transform

is not so clearly physically motivated. Its main advantages

are its mathematical elegance and computational ease. Fur- )

ther, since it is defined in terms of the time-ordering operator G(z )—J dw E— 9

T, G(7) admits a diagrammatic expansion via Wick's theo-

rem. Moreover, whereas the retarded Green’s fundBB(t)  where the spectral function, given by the magnitude of the
is aperiodic int (it has a lone discontinuity at=0), the discontinuity inG across the real axis, viz.,

temperature Green’s function is periodic inwith period

2. 1
The two Green’s functions have Fourier representations: A(w)=——=ImGR(w)
the first a Fourier transform &

r
GR(t)=%ﬁxdwe’i‘”tGR(w) &) == 5 [Glo+i07)=G(w—i07)], (10

is non-negative and normalized to unit
and the second, as a consequence of its periodicity, a Fourier 9 y

series -
A(w)=0, f do Al(w)=1. (11
i 2 Imﬂ'T/BG (4) -
B odd "
Typically, we are working in the Matsubara formalism
1 and we calculaté&(w,,) from its self-energyvia G(w,) !
— e '""G(w,), (5) =iw,—&—2(wy,)], which is in turn calculated from an ap-
'8 @n proximate theory based on, e.g., a diagrammatic expansion

Wh|Ch in Eq (5) we have recast as a sum over the Matsub_of the propagator From here the route to real time dynamlCS

ara frequenciebw, = (2n—1)7/B:n e Z} of some new Fou- S SOmewhat circuitous:

rier componenG(w,,).

The formal connection between the real- and imaginary- 2 o 3

time formalisms is the following: There exists a unique func- G(wn)~+G(2)~ G (@)~ G(1). (12

tion G:CG—C with asymptotic form
— (1) The first step is to analytically continue from the Fourier
G(2)=(1/2)[1+ O(1)/Imz], (6)  components of the temperature Green’s function to construct

which takes on the values of the Fourier components of th&. That this is possible, in principle, provided we know
temperature G_reen’s function at Matsubara points on th&(w,)=G(iw,) for an infinite set of points including the
imaginary axisG(i w,) = G(w,) and gives the Fourier trans- point at infinity, was proved by Baym and Mernfiri2) Sup-
form of the retarded Green’s function just above the real axigosing that the analytic continuation to the upper half plane

G(w+i0")=GR(w). That is, Eqs(3) and(5) can be writ-  ¢an be found, we merely evaluate it along the real tots-
ten as ting z=w+i0") to getG¥(w). (3) A Fourier transform then

recovers the real-time response function.

R ot et In practice, however, we do not know the values of

Gh()= Ej,xdwe G(w+i0") () G(wp) at an infinite number of points. Moreover, even if we

did, the theorem of Baym and Mermin shows only the exis-

and tence of a functiors. There is no general method to perform
the analytic continuation—hence the need for a procedure

1 ~ionTea(i such as the Pade
G(n=5 2 e ""Gliwy). 8)
Clearly, all the information one can potentially extract from Ill. PADE APPROXIMANTS

these functions is contained (. The Pademethod is based on the assumption tBatan
The functionG has several interesting properties. First, it he written as a rational polynomial or terminating continued

is analytic everywhere in the complex plane with the excepfraction. Since theories are most commonly specified by a
tion of the real axis; this is a causality requirement. Secondghoice of self energy, the continued fraction form turns out
the value ofG in the upper and lower half planes is related to be the more useful, at least for investigating questions of a
by G(z )= G(z)* which is a statement of the time reversal mathematical naturée.g., analytic structuje In particular,
symmetry between the retarded and advanced Green'’s funewe shall find it helpful to conside6 (in the upper half
tions. Its immediate consequence is that the imaginary paglane a continued fraction of Jacobi forfi (J-frag. That is,



PRB 61 RELIABLE PADE ANALYTICAL CONTINUATION . .. 5149

)\3 7\5 7\r2 ery terminating continued fraction is equivalent to a rational
— (13 polynomial. For instance, a J-frac wittstories, Eq(15) say,
€~ 2-€ € can be written as the ratio

G(2)=G+1)(2) =5

1 < P (2)
S — (14) Sn(2)=
z—¢6-3(H(2) «

where the\,, ande, are complex constants. By comparison _ i _
with Dyson’s equation, Eq(14), we make the identification of two polynomialsP,Q defined recursively by the formulas

)\3=1 andey=¢, whereé is just the free particle energy 5
measured with respect to the chemical poteritighen, we Pn+1)= (2= €n)P(n)(2) =M P(n-1)(2) (193
find thatX )(2) is itself a continued fraction

(18

Qn+1)=(2=€)Q(n)(2) = N:Q(n-1y(2) (19b)
_ % A3 A2

2n(2)= = 7—e— 7-e (15  (forn=1,2,3...) with base cases

P=0, Pu=\] (20a
The justification for this continued fraction form is a theo-
rem (_1ue to Wall and WetZ&Which assures us t_hat a posmve Qu=1 Qu=z—e. (20b)
definite J-frac has a spectral representation with non-
negative, integrable spectral weight and that it is analytic inW . he leadi q & and
the upper half complex plane—all the properties we krtdw riting out the leading order terms 6fandQ
must have to be physically reasonable. By positive definite

J-frac we mean a continued fraction in the form of ELp) Piy(2) =Nz 1= Nj(eptegt - +e)z "2+
satisfying Ime,<0 and for which there exists a sequence of (213
real numberg,,g;,... (0=g,=<1) such that

Qu(2)=2"—(e;+ey+---+e)z t+...  (21b

(Im\p)?=(Ime, 1)(Ime,)(1-gn-1)gs.  (16) , o ,
makes it clear that the polynomi® is of orderr—1 in z
There are two special cases worth mentioning. IfXie  while the polynomialQ is of orderr. {Accordingly, one re-
ande, are all real then the J-frac is positive definite and carfers to fm in Eq. (18) as a[r—1/r] rational polynomia}.
be cast as a sum of simple pdles Moreover, it suggests that we write the self energy explicitly
as a rational polynomial of the form
R,

r
> 17 _ +pyz+---+p 2t
n=12— En E(r)(Z): P17t P2 Pr

. (22
a1+Qz+---+q, 2 1+2
with real, distinct energiek,, and positive residueR,>0.
The J-frac is also positive definite if the, are real and none It is straightforward to relate the old and new coefficients to
of the e, sits in the upper half complex plarf€g. (16) is  one another via Eqgs(19) and (20): e.g., A\f=p,, &
satisfied by setting aj,=0 or 1], in which case the function =Pr-1/Pr—0, etc. _ o
is characterized by simple poles resting on or below the real The coefficients,, g, can be determined by specifying
axis. In the general case, all the continued fraction coeffithe value ofX , at 2r points,viz, by solving the set of 2
cients have the potential to be complex, with the exception ofinear equatio
N3=1, ep=¢, and\?. Sinceey,=¢ has no imaginary part,
Eq. (16) .ir.nplies that the coefficiemf must always be real {f(r)(iwn)zz(wn)}_ (23
and positive.

It is clear that by observing the values of thg, e, If we define the column vectors
coefficients, one can learn a great deal about the analytic

properties oﬁ(rﬂ). For example, if some, th a positive [ p1]
imaginary part(and nox,,=0 for m<n) thenG , ;) may : oi(iog)"
have a pole in the upper half plane—such a function would D b ooliwy)
be noncausal and have negative spectral weightact, it is [ }: "I and o=| ° ) 2 , (24)
through such considerations that we are led to propose a q a1 :
method for testing the accuracy of a given analytic continu- : oo(iwy)
ation via a Pade
Nonetheless, despite the usefulness of the continued frac- L Ar ]

tion. form, for colmput&_xtional purposes it is actuglly muchwheres, =3 (w,) are the known values of the self energy at
easier to work with rational polynomials. Conveniently, ev-2r Matsubara frequencies, and a matrix
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1wy - (i)™t —oy o —oylie)!
1 iwy -+ (i)™ -0y 0 —oplie) Tt
X=|, . (25)
1 iwy - (inr)Pl — Oy _O'Zr(inr)Pl
|
equivalent to the system of equations given by €8), then For the case of a self energy, known at the first 2
the entire process of analytic continuation is reduced to #Matsubara frequencies above the real line on the imaginary
single matrix inversion axis, we have shown that the matdis given by Eq.(25).
Sincel (w,) ~ 1/w,, the ratio of the largest to smallest terms
D in Xis {=(wy,)" =[(4r—21)#T]", the square of which gives
{ }:X—l”&, (26)  an estimate of the amount of precision needed to inXert
q Here, that corresponds to
which provides the polynomial coefficients necessary to con- 2r log;o(4r —1) =T (29)
struct
decimal digits.
[1z2Z- 7Y To achieve a sufficient level of precision for our numeri-
g(r)(z)z P ) (27) cal work, we implement the Padggorithm using the sym-
[1zZ .- 2 Yqg+7 bolic computation packageapPLE. UnderMAPLE, expression

evaluation takes place in software and thereby transcends the
limits imposed by hardware floating point. All computations
are performed in base ten to any desired level of precision
(we specified Digits= 2502%. Moreover,MAPLE is an ideal

What we propose is that, having determined the q,
coefficients, we recover the,, e, coefficients and then use

the criteria provided by Wall and Wetzel's theorem to deter->""°. . ) : . .
. . _ — ) environment for rapid prototyping since high level matrix
mine whether the matrix inversion producedsg 1) With  gata types and routines are available as primitives.

an acceptable analytic form. As a first step, we investigate /o begin by considering a test function of known ana-
what can be learned frois, the first nontrivial J-frac coef- lytic structure. The self enerdy

ficient. )\f is equal to the sum of the residues of the poles in

the self energy and as such it gives the high frequency U2

asymptotic behavior of the self energy \qu,)(z)~)\§/z. A S (K, wp) = — B 2 > X%AQ, vy )GAQ—K, vy — wp)

necessary condition for positive definiteness is th%tbe Q " (30

real and positive. We shall see that the convergence mfflm

to zero as a function of the numberof poles in the Pade qresponds to the first “rung” of the ladder diagrams in the

fitting function can provide information on the quallty_of the T matrix2 approximation of the single-band Hubbard

fit and on the analytic structure of the true continuat®n model? (characterized by a near-neighbor hopping integral

and an on-site repulsion enerdy). Here, G° is the free

IV. NUMERICAL RESULTS propagator

The procedure we have outlined in Sec. Il is a special-
ization of the following general Padeocedure—such con- GOK, w,) =
siderations are central to our statistical analysis of the quality on
of the fits provided by this method.

Given a functionf and a setA of 2r input points, we  andy? is the free pair susceptibility

suppose that we can approximate_ the analytic continudtion
by a[r—1/r] rational polynomialf,, the coefficients of R 1 R - -
which are determined by solving the linear system of equa- X*(Q,vn)= M % wE GOk, wn)G%Q—K,vn— @p).

(31)

lwn— &k

tions {f_(r)(a)zf(a):aeA}. This problem can be cast as a (32)
matrix inversion in which the kerneX has elements with
ratios as large as The frequency sums in Eq&30) and(32) can be performed
_ analytically, giving*
Z=|(maxAUTf(A)"~Ymin AUT(A)]|. (29
Thus, to reliably perform the inversion we need a numerical XO(Q,Vn)= % 2 fl&l+f[ég-k]—1 (33

range~ {2, i.e., 2 logol decimal digits of numerical preci-
sion. This analysis is general in that no other Pald@rithm
can have less stringent precision requirements. and

Kk dvp—&—&5«
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2 ) Lo L fre- Lo
E(E,wn)=u—z (fLéc 1+ flé6-k 1— D[ gkl f[fk’]f[ngk’]. (34

M2 G font &gk &0~ ég-k

Since theé; are real, the analytic continuation of the self- In practice, we choose to be a small, but noninfinitesimal
energy is a meromorphic function with a finite number of positive real quantitywe use 7/t=0.064), which has the
simple poles, all situated along the real axis. Calculated isffect of introducing a slight artificial broadening to the
two dimensions on an88 (M =64) lattice, itsk=0 com-  §-function peaks of the spectral function.

ponent possesseg= 26 poles(The numb_er of poles is .de' The results of this comparisdfor thek=0 component of
termined by counting the number of distinct elements in the[he spectral functionare presented in Figs.(d and 1b),

set{ég— & — &gk Y K'.Q}) _ whereF is plotted as a function of for different values of
tion strength|U|/t=4, chemical potentialu/t=—2, and = ~logyol/(v,)™=mlogyev, (and thus a largeiE corre-

temperaturel /t=0.7—the test function, Eq.30), is calcu-
lated in two different ways for the Matsubara frequencies

{wq,0,, ... wy}. First, it is calculated exactly, as pre-
scribed by Eq(34), but with a small, random errovjz., each 100
value is multiplied by # e with —1<e<1. Second, it is { ¢ E=120 @)
calculated by truncating the Matsubara sum at an arbitrary 80 ° gf;go
cutoff frequencyr,>1 (much larger than the relevant en- 1. E;60
ergy scale of the problemand then systematically adding 601 = E—=40
back the high-frequency contributions up to a given order. o E=20
That is, F oy 1
1 0/ 0 A_1k
= 2 2 X°(Qurn)GAQ—K, vy — wp) 20
VnV 4
1 0/ A GO e |Z 0;
= B i, X (Q,v,)GT(Q +Vnr — @p) 0
m—1
2 X QO pfiont G-l +O[Urp)"], 100+
{ .
(35) 804 ¢
where 1o
60 =
X0 = 3 (fl&d+1Tés d-1)(E+ €5 ) i
® M % F 401
(36)
are the coefficients of a Laurent expansiony8¢Q, »,,) and 20
the ® ;) functions(defined in the Appendixare constructed ]
using the symbolic manipulation capabilities APLE. 04 !
Now, we let the .self-energy, evaluated at the first 2 0 10 20 30 40 50 60 70 80
Matsubara frequencies according to the two schemes de- r

scribed above, serve as the input to the Padeedure. The
= FIG. 1. For various levels ofa) random and(b) systematic

resulting aBproiﬂma[llE(r). yields a propag.atoG(,+1)(J<,z) error, characterized roughly as 19 (see the text for more detalls
=[z— §|;—E(Q(k,z)]a with spectral functionA, . 1)(k,w) the quality of the Padét as measured bl [see Eq(37)] is plotted
=—(lm)Im G(r+1)(k,w+i0+). The spectral function de- with respect to the number of poles in the Paggroximant(the
rived from the Pad@pproximant is compared to that of the solid lines are a guide to the eyeThe k=0 self energy being

exact function using the logarithmic measure studied is that of Eq(30) where the parameters of the attractive
. Hubbard model(with t being the hopping energyfor an 8x8
lOfFEf dX[A(IZ,X)—A(Hl)(IZ,X)]Z square lattice, are a repulsive enefgh/t=4, a chemical potential
—o plt=—2, and a temperaturé/t=0.7. The vertical dashed line

indicates the number of polesy=26) in the true Green'’s function.
1 [~ — . . — _ . 5 In plot (a), error bars(representing the standard deviation of the
- ;f_wdxﬂm[G(k,x-H 7) = Gy(kx+i n]|%. data points over a set of initial random seedse smaller than the
symbols marking the data points and are not shown. In(plothe
(37 dotted line is the best linear fit through the maximum valuek.of
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FIG. 2. Thek=0 spectral function of the Padgproximant is compared to the exact spectral function for different levels of random error
(10°E) on the initial input points. The parameters of the Hamiltonian and the self-energy being studied are the same as those of Fig. 1.

sponds to a smaller erforin each graph, a vertical dashed additional information brings to the Padgpproximant is
line marks the exact number of polesy,€26) in the true  soon outweighed by the accompanying complications: When
self energy. The most distinctive feature of both graphs isa rational polynomial of degree — 1/ ] is used to fit a func-
that, at high accuracglargeE), theF curves exhibit a large tion with ry<r poles,r—r, zeros of the numerator must
step at the point =r,. In the random error case, te  coincide with an equal number of zeros in the denominator
=120 curve jumps by four decades, and this represents an order to cancel the extraneous poles.rAsr, grows, it is
improvement in the Padft of nearly 40 orders of magni- less and less likely that this cancellation will be complete. A
tude. In the systematic error case, the result is even morslight misplacement of zeros leads to “defects” in which the
dramatic: theE=100 andE=120 curves jump by roughly function moves between 0 and in a small neighborhood.
four and seven decades, respectively. Moreover, it cannot be predicted where these zero-zero pairs

At these large accuracies, the only factor inhibiting thewill appear’’ For the purposes of calculating a spectral func-
success of the Padgpproximants is the lack of a sufficient tion, they are of little consequence provided that they lie
number of poles to reproduce the analytic structure of theleep in the complex plane. However, when they are not so
true function. The large jump observed in the laEjeurves  far removed from the real axis, they can distort the spectral
marks the pointr =rg, at which the number of poles in the function away from its proper shape. When they lie on or
Padeapproximant exactly matches the required number, andear the real axis, they can give rise to deep troughs of nega-
for this and larger there is no difficulty in finding an excel- tive spectral weight and other spurious, nonphysical features.
lent fit of the test function. In contrast, when the input points  The deterioration of the Pad#, as described above, is
are known to relatively low accuracy, no such feature is ob-evident in Figs. 1a) and Xb) in which many of the~ curves
served, and instead the curves pass smoothly through. reach maxima at points,.ss>ro and then quickly begin to
This makes clear that for self energies calculated to 20, 4(all off for largerr. Interestingly, this behavior is much more
or even 60 decimal digits of accuracy, the level of error inpronounced in the systematic error case where such maxima
the input points is still the main obstacle to a successful Padeccur for each curve. In the random error case, the curves
fit. below some error threshold are essentially flat forrall

The usual response to this situation is to increase the num- The primary lesson that one should draw from these re-
ber of Padepoints in an attempt to overcome the intrinsic sults is that the addition of Padeoints well beyond the
error limitations(by making the system of equations more required number is not a useful strategy for improving the
and more overcompleteHowever, whatever advantage this Padefit. Unless the exact analytic continuation is already
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known, there is no way to predict the value f.s. We
believe that better results are achieved by fixing the number
of Padepoints at 2, (giving rise to a[ry— 1/r] rational
polynomia) and working towards increasing the accuracy
with which those input points are calculated. Even a small
effort there can result in an improvement of several orders of
magnitude in the fit. What to try when one does not kreow
priori whatr is discussed later in this paper.

Now consider Figs. @) through Zd) in which the spec-
tral function of a Padapproximant with 26 pole&alculated
by specifying the value of the self energy at 52 Matsubara
frequencies is compared to the exact spectral function. In
Fig. 2(a), the accuracy of the input points is given Iy
=16 (random errox, roughly the number of digits in a
double precision Fortran variable. Despite the fact that the
overall energy scale is correct, the details of the fit are quite
poor. Here, the effect of insufficient accuracy is to produce a
washed out version of the spectral function, which com-
pletely lacks fine structure. Even Bt=30[Fig. 2b)], corre-
sponding to the number of digits available in the largest For-
tran data type, the Padeversion is only just beginning to
distinguish the main peaks of the spectral function. Figure
2(c) shows the result foE=80 and Fig. 2d) the result for
E=120. Notice that in Fig. @), the fit is near perfect: even
the smallest peaks have been reproduced faithfully.

In this example, withr =r,, the Padeapproximant pro-
vides a remarkable fit to the true function whenever the ac-
curacy of the input points is better th&~110. The diffi-
culty in translating our success in this specific case to the
general problem is that, in real applications, one has no way
to judge when sufficient accuracy has been achieved. Alsg
in most instances, the number of poles in the self energy i
unknown.

In what follows, we hope to address these deficiencies

We begin by defining a logarithmic measure of the imagi-
nary part of the J-frac coefficiemtf:

10 A =|Im 2.

(39)

We argued in Sec. lll thatf ought to be real and positive. In
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FIG. 3. For various levels df) random andb) systematic error

g’lO‘E), the parameten is plotted with respect to the number of

poles in the Padapproximant. The parameters are the same as
those of Fig. 1. The vertical dashed line indicates the number of
poles f,=26) in the true Green’s function. The solid line originat-
ing in the lower left corner is given byrdog10(4r —1)=T. In plot

(b), the dotted line is the best linear fit through the maximum values
of A. The parameters of the Hamiltonian and the self-energy being
studied are the same as those of Fig. 1.

When 0<r <r, the accuracy of the Padgproximant is
matrix inversion dominated and the behavior /ofis gov-
erned byA~2r log,(4r—1)#T. In this regime, the Pade

a Padecalculation, however, it is real valued only to within @pproximant has too few poles to fit the true function and
some small fraction, which characterizes the numerical serthus the matrix inversion mUSt_JUQICIOUSW arrange the av_a|l-
sitivity of the matrix inversion. As we shall soon discover, able poles(sometimes apportioning one pole to a region

the convergence of the imaginary part )of to zero (A
—o) can be usedl) to determine when the threshold of
accuracy for an exact fit has been reached(@htb infer the
value ofr if it is unknown.

In Figs. 3a) and 3b), we plotA as a function of for the

where there should be two or thyge give the best possible

fit. In the opposite limit,r>r,, the accuracy of the Pade
approximant is input-point error dominated. In this regime,
there are more than enough poles to perform an exact fit, but
the proper placement of those poles and the determination of

random and systematic error cases. Over each plot is supdheir residues is hampered by the finite accuracy to which the

imposed a reference line given by E89). What we observe
is a set ofA curves that initially follow the reference line but
later fan out, spaced according to thEivalues. Our claim is

input points are known. We find this reflected in the
curves which, for large, saturate at a valué ~E (roughly).
Most interesting, though, is the behavior &fin the vi-

that these curves provide the quantitative measure of succesmity of r =r, where theA curves in Figs. @) and 3b) first
of the Padeapproximant that has heretofore been lacking, thecross the reference line. In those plots, we see thatAthe
essential point being that the shape of the curves reveals tlwairves corresponding to small valuestb€losely follow the

performance characteristics of the Paulkersion in the vari-
ousr regimes.

reference lind Eq. (29)] until finite accuracy becomes a lim-
iting factor. The curves then fall below the reference line and
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becon_‘ne more or less flat. A:'sis increased, the coordinate ) U2 XO(Q,vn,)GO(@—IZ, Ve — wp)
at which a givenA curve first deviates from the reference X (k,w,)=
line moves to the right unti{for some accuracyk, say it (39)
coincides withry. Here, there is a sudden change in behav-

jor: all A curves corresponding to accuraciEs E, cross Here, the frequency sums cannot be performed analyti€ally

the reference line at=r-. Such a crossing sianals that there and thus we do not have a closed form analytical expression
oo , 9slg “for the self energy(Thus, this is more representative of the

are now both sufficient poles in the approximant and suffiy,q,5| situation in which the Padeethod might be appliey.

cient accuracy on the input points to }it more or less ex- In this case, we know only that its analytic continuation has

actly. We can verify this interpretation by appealing to Figs.a finite number of poles along the real afédthough we are

1 and 2, which clearly show a large jumpragtfor precisely — able to predict analytically an upper bound for the number of

the same curves that demonstrate a crossing in FigsaBd poles. ) _
3(b). This self energy can be calculated to high accuracy using

The results we have described are extremely general arifi® method of Eq(35) with the X(y(Q) replaced by the

do not depend on the choice of test function. For exampleSoefficients of the Laurent expansion 93?0(@,1;”)/[}
we may replace Eq(30) with the full non-self-consisterif-  +Ux%(Q.vy)]1.  That is, x(,(Q—=x()(Q). x(»(Q)

BM “5 1+UX%Q,vy)

matrix self energy —x()(Q) —Ux{1,(Q)? and so on according
@4_ -)((2)2+ -X(3)3+"' 2 2.3
Vno (ivg)® (ivy) :)ﬂ+X(z)_UX(1)+X(s)_ZUX(z)X(1)+U Xw ., 40
vy iv,)? ivy)®
LiulXw, Xe | Xe (ivp) (ivn)

e (g2 (ivg)?

The Padeapproximant method can then be applied to Eq.usedvAPLEVRS5.1, and for those researchers who want to use
(39) calculated in this way. We find that the resulting plot of this software we have provided an example computer pro-
A vsr is identical to that of Fig. @) except that the crossing gram(as amAPLEVR5.1 worksheek displaying our use of this
of the reference line at high accuracy now occursrat algorithm. These worksheets can be obtained via anonymous
=156. This allows us to deduce that the function Ings ftp.?* Also, updated versions of this code can be found at
=156 poles, significantly more than the 26 poles of 84).  ftp://physics.queensu.ca/pub/rjg/research.

{This is a consequence of the lifting of degeneracy in @ach
component brought about by the renormalizatiorf11/ VI. CONCLUSIONS

+U(Q,v,)].} We also find that the approximant spectral . . - .
function compares well with increasing accuracy of the input | "€ Padeprocedure is very sensitive to the numerical
points to the numerically exact spectral functions as calcuPr€cision with which the matrix inversion is performed and

lated (i) by a non-Padenethod due to Marsigliet al (this to the intrinsic error on the input points. Sufficient precision
non-Pademethod is of limited application since it requires 'S difficult to achieve in traditional computer languagesy.,

the self energy to have a very specific form, but for thoseC» Fortran and so, in many instances, it may be necessary to

cases where it is applicable, it can outperform the ‘Pad8@ke use of a symbolic computation package capable of sup-

method, and (i) by an exact partial fraction decomposition porting very large precision data types. Likewise, sufficient

of the self energdf that can be done to a very high accuracy 2°Curacy is difficult to achieve without a sophisticated com-
(say 10%° on all poles and residups putational schemée.g., the®-function expansionthat goes

Finally, one interesting feature that could potentially beP&Yond a simple truncation of the Matsubara frequency sums

exploited is that for self-energy values calculated using thd? the self energy. The required level of precision and accu-
function expansion, the value of which gives the maxi- '2cy depends on the temperatdiewhich controls the spac-

mum value ofA rouahlv tracks cf. Figs. 1b) and 3b)1. ing of the Matsubara points, and on the pole cauynt
gy best( Cf- Figs. 1b) 3b)] An insufficient level of accuracy leads to an approximant

spectral function that lacks fine structural detail or, worse,

one that exhibits spurious spikes or troughs of spectral

weight. This poses a problem whenever we are interested in
The implementation of the above-described method on #he presence of a specific feature in the spectral function

computer can be done in any computer language that allow®.g., the onset of a normal-state pseudgghpthat case, it

for the user to achieve a high numerical accuracy. We havis essential to have confidence in the quality of the Pade

V. COMPUTER CODE
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result. We must be convinced that the observed feature iknow that there is much additional information that can be

robust and not merely a byproduct of insufficient accuracy. extracted from the remaining continued fraction coefficients.
We have argued that simply adding more Ppdimts can-  In future, perhaps our analysis can be extended to include

not compensate for too large an error on the input pointse;, \,, e,, etc.

While there is a small set ofvalues for which an increase in

r improves the fit, there is no known criterion that indicates ACKNOWLEDGMENTS
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es]

, - - David Senechal and AndreMarie Tremblay for helpful com-
regime where such points degrade it{r,es) . Instead, we ) .
recommend the use of a Padpproximant function having ments on their recent papThis work was supported by the

the same number of poles as the function to be fit. The exaé\tJSERC of Canada, and the Institute of Theoretical Physics

number of poles, when it is not known, can be determined)f the University of Alberta.
from the crossing point in & vsr plot. The crossing also APPENDIX
indicates that a sufficient level of numerical accuracy in the

input points has been achieved. In addition to the usual occupation functions

There are several caveats to the procedure we have out- 1 gion0” 1
lined. (1) If the true Green’s function has a branch cut along fix]== > - = (Ala)
the real axis arising from transcendental functions therk no B oy lop—X  efXyq
crossing will ever be observed, since a branch cut of that
kind can only be represented by an infinity of poleg (
=), (2) The self energy of the Green’s function we are 1 gl vn0”
trying to reproduce must have the correct asymptotic form b[x]=— E E v, —X = eBX_ 1 (Alb)
Yn

and must be analytic in, say, the upper half of the complex
plane; otherwise, the rational polynomialr continued frac-
tion) form of the approximant cannot reproduce its analyticit is often convenient to defingartial occupation functions.
structure.(3) The Pademethod is often used to model a For example, the Bose version of such a function looks like
function that is smooth in some region of interésell away o
from its poles and such calculations are rarely performed 1 e'n0 1
with more than machine accuracy. Our numerical analysis of b[x]=— B 2 v —x_ 2w
the Padeinversion, with its prediction of extremely high- e n
accuracy requirements, is not meant to invalidate these re- (A2)
sults. We have applied the Padeethod to the particularly \here ¥(2)=dInT(2)/dz is the digamma functio? This

difficult problem of reproducing the sharp peak structurescan be generalized to m-order function(symmetric in its
characteristic of a spectral function whose Green's functionyrguments

has its poles along the real axis. In that case, the poles lie in

> (1Vpe17%)

the region of interest. The precision and accuracy require- BIXy, Xz, « o X

ments of the Padmversion are greatly reduced if the poles

of the Green’s function lie deep in the complex plane. 1 1 1 1
Finally, let us remember that the starting point for our I = D R e A e

Padeapproach was the realization that the convergence of
the continued fraction coefficients to “allowed” values can
provide a criterion for judging the quality of a Padpprox-
imant, even if the analytic structure of the function we arewhich has the interesting property that it can be expressed
trying to fit is unknown. In Sec. IV, we demonstrated the (via partial fraction decompositionin terms of the
utility of this idea using the\; coefficient. However, we (m-—1)-order partial occupation function

(A3)

BIX1, Xz, + oo X2 Xme1]=B[X1, X2, « + + Xm—2:Xm]
~ Xm—1"Xm
b[X1,Xz, ... Xm]= (A4)

if Xm—1%Xm
d~ .
Wb[xl,xz, o Xm-2,Y ] ly=x | otherwise.

Equation(A2) serves to terminate the recursion.
Furthermore, it is straightforward to show that for ke 0
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o 1 E 1 1 and an infinite sum over the remaining frequencies
(1+2)[X]— B v, (ivn)l+l iv,—x
1 - N
1 1 1 "G, x%(Q, vy )GAQ =K, vy — wy)
TTBLS, ) T ix n .
| | 1 x?l,(Q)] 1
(—iv )I+1 v —x B |"n;>"p =1 (iVn’)I i(Vn’_wn)_féfﬁ
=5[0,0, ...,0,x]1+(—1)'5[0,0, ...,0,—x] I (Q)l 1 1
< X() B ; . | T .
e, s’ e I=1 |Vn’>Vp (|Vn/) |Vnr (|(1)n+gQ,k)
I+1 I+1 -
41 0/ R .
- . =+ 2 X0 ( QO pliwntégil, (A9)
=71 37 (PLoyI+ (= D'B[=x.yTHy-o, sy SO e

(A5)  where, in Eg.(A9), we have used the fact that the free sus-
. oy O . . .
where, according to Eq(A4), the two-argument function \(;:ﬁggllgty X~ admits a Laurent expansion in the frequency
b[x,y] is related tob[x] by

= bx]-b[y] R 11 o fl&]+f[&5-8—1
b[x,y]= ———— (AB) Oy =——3 [&+ €6 k]-
Xy g M5 1 (gt €g-0) vy
providedx#y. The ® functions provide a closed-form rep- X?”((j) X?Z)(Q) ng)((j)
resentation of the high-frequency asymptotics of a broad =, Tt st
class of Matsubara sums. In particular, the sum n (ivn) (ivn)

1 (A10)
~3 ; X°(Q, vy )GAQ—K, vy —w,) (A7)

with Q-dependent coefficients

can be separated into a finite sum over all low frequencies

-1
X(Q)= gy 2 (&I flEg-el— D (&t o0

- %(Q, vy )GUAQ—K, vy — oy A8
Blw%x(Qv )GU(Q—K, vy —wn)  (A8) (ALD

*Present address: Department of Physics, Massachusetts Institute virtually no extra time required to make such high-accuracy cal-
of Technology, Cambridge, MA 02139. culations, and thus there is no reason to not implement algo-
10f course, other methods are available for certain formulations of  fithms such as this with a very high accuracy.
the many-body thermal Green’s function problem. A number of *We use the convention that,=(2n— 1)/ represents a fermi-
these are discussed in a recent paper: see J. Schmalian, M. Ohic Matsubara frequency ang=2n/g a bosonic one.
Langer, S. Grabowski, and K. H. Bennemann, Comput. Phys. See, e.g., A. L. Fetter and J. D. Waleck@uantum Theory of

Commun.93, 141 (1996, and references therein. 13 Many-Particle System@vicGraw-Hill, New York, 197).
2G. A. Baker,Essentials of PadépproximantsiAcademic Press, O those readers not familiar with the Hubbard model, an excel-
New York, 1975 lent discussion may be found in A. Auerbaéhteracting Elec-
’ ' trons and Quantum MagnetisitSpringer-Verlag, New York,

3H. J. Vidberg and J. Serene, J. Low Temp. P#8.179(1977.

4 . 1994.
G. Baym and D. Mermin, J. Math. Phy2, 232(1961).

These relations can be derived most easily using the identity
SH. s. wall, Analytic Theory of Continued Fraction&helsea, [1—f(x)—f(y)]*b(x+y)=b(x)*b(y), where f (b) is the

. New York, 1948_- ' ~_ Fermi(Bose distribution function.
The implementation of such a form was made recently in S. Pairl5As viewed in theu-T phase diagram, this choice of parameters

ault, D. Seechal, and A.-M. S. Tremblay, Phys. Rev. L0, places the system well inside the band4< w/t<4) and just
5389(1998; also see cond-mat/990524a@npublishedl above the superconducting instabilitf ¢ T.), the so-called
"We have chosen to absorb all frequency independent terms of the Thouless criterion line. This region is of interest in that one
self energy intcf. expects to see a suppression of the spectral weight around the
8H. S. Wall and M. Wetzel, Trans. Am. Math. Sd&5, 373(1944). chemical potential, the so-called normal state pseudogap.
9The system of equations is linear in the §) basis, but notinthe *°In fact, the frequency sum can be performed formally to yield an
(\,e) basis. infinite sum of generalized occupation functions. However, this

OThere is no reason to choose this specific value. Any Digits that is of no computational value since it only trades a difficult fre-
are in excess of what is required by the statistical test discussed quency sum for an infinite series of increasingly more difficult
in this section is adequate. It is important to note that there is (at each orderk sums.
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Theorems do exist concerning their overall distribution in the cond-mat/991217unpublishedl
complex plane; se&ssentials of Padé\pproximants(Ref. 2), ?lsee EPAPS Document No. E-PRBMDO-61-019007 for
Chaps. 11 and 13. MAPLEVRS5.1 worksheets displaying the programming and imple-
!8This expansion is easy to implementyaPLE using the series) mentation of the Pademethod used here. This document may be
command, although the computational resources required to ex- retrieved via the EPAPS homepagéhttp://www.aip.org/
ecute it are significant due to the combinatorial explosion of  pupservs/epaps.htindr from ftp.aip.org in the director /epaps/.

" terms 2_31 high order. See the EPAPS homepage for more information.
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